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We propose a stabilized Residual Distribution (RD) scheme for the simulation of shallow
water flows. The final discretization is obtained combining the stabilized RD approach
proposed in (Abgrall, J. Comp. Phys. 214, 2006) and (Ricchiuto and Abgrall, ICCFD4,
Springer-Verlag 2006), with the conservative formulation already used in (Ricchiuto
et al., J. Comp. Phys. 222, 2007) to simulate shallow water flows. The scheme proposed is
a nonlinear variant of a Lax–Friedrichs type discretization. It is well balanced, it actually
yields second-order of accuracy in smooth areas, and it preserves the positivity of the
height of the water in presence of dry areas. This is made possible by the residual character
of the discretization, by properly adapting the stabilization operators proposed in (Abgrall,
J. Comp. Phys. 214, 2006) and (Ricchiuto and Abgrall, ICCFD4, Springer-Verlag, 2006), and
thanks to the positivity preserving character of the underlying Lax–Friedrichs scheme.
We demonstrate the properties of the discretization proposed on a wide variety of tests.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

We consider the solution of the two dimensional shallow water equations (SWE) by means of conservative Residual
Distribution (RD) schemes on unstructured triangular meshes. The SWE model the dynamics of shallow free surface flows
under the action of gravity. The model used here does not include the effects of friction or other source terms beside the
ground elevation (bathymetry). It constitutes a non-homogeneous system of conservation laws for the water height and
its discharge. We will also consider the case of dry bed, where important properties of the system are lost, and one runs into
several numerical problems.

When solving the SWE, the discretization should respect a certain number of criteria. The schemes should keep the lake at
rest solution, i.e. there should be no spurious numerical waves in areas with zero velocity and constant total water height.
Schemes which keep the lake at rest solution are called well balanced. In presence of a dry/wet interface, the preservation of
the positivity of the water level becomes important. Similarly, spurious oscillations near discontinuities are an unwanted
effect. Hence, we need schemes that enjoy some kind of positivity preservation property, and that have a non-oscillatory
character.

To solve the system numerically, we combine the stabilized formulation of nonlinear limited Residual Distribution (RD)
schemes proposed in [2,40], with the conservative approach of [18,42], which has been already used in [41] to solve the SWE.
In the last reference, however, some issues are left open, or not addressed in detail.

The most important is the lack of iterative convergence encountered when using most nonlinear high order RD schemes.
This hampers grid convergence, leading to sub-optimal accuracy. This issue is analyzed in [2,40], where a cure is proposed.
The idea is to add, in smooth regions of the solution, a high order streamline dissipation term. Having a residual character,
. All rights reserved.
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hiuto).

mailto:Mario.Ricchiuto@inria.fr
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


1072 M. Ricchiuto, A. Bollermann / Journal of Computational Physics 228 (2009) 1071–1115
this term does not spoil the accuracy of the (already formally second order) underlying nonlinear scheme. It actually im-
proves it by improving the properties of the algebraic nonlinear equations. Ultimately, this guarantees the existence of a un-
ique solution, and restores iterative and grid convergence. For the steady SWE, preliminary results employing this technique
have been already shown in [41]. However, the schemes used in [41] have an upwind character. While somewhat improving
the convergence properties, upwinding requires heavily the use of the flux Jacobians. The resulting schemes are quite costly,
and one can run into trouble in vicinity of dry/wet interfaces.

In this paper we improve on the work of [41], by using nonlinear discretizations based on a simpler approach. This is
achieved by:

� using the stabilized formulation of [2,40]. This allows to build a more flexible discretization, and ultimately allows to
achieve the expected grid convergence whenever the solution is smooth;

� using a nonlinear discretization built upon a multidimensional Lax–Friedrichs scheme. The numerical results show that
the stabilized nonlinear Lax–Friedrichs scheme yields results as accurate as the ones obtained with the nonlinear variants
of the multidimensional upwind N scheme proposed in [41].

� adapting the nonlinear Lax–Friedrichs scheme to the computations of dry/wet interfaces. In this respect, we benefit from
the positivity properties of the underlying first order Lax–Friedrichs scheme. However, an ad hoc treatment of cells at the
wet/dry front is still needed to be able to fully profit of this property, and to guarantee the preservation of the steady lake
at rest state.

One of our major objectives is to show how to adapt the existing RD technology to obtain schemes tailored to shallow
water simulations, and yielding, on unstructured triangulations, results comparable to the ones given by state of the art finite
volume discretizations.

The exposition is organized as follows: In Section 2, we briefly recall the SWE, their properties, and some exact solutions.
In Section 3, we discuss the basics of conservative RD schemes, with a description of how we implemented the stabilization
procedure of [2,40] in the steady as well as in the time dependent case. The application to the SWE is then discussed in Sec-
tion 4. We recall and generalize some results presented in [41] concerning the well balancedness of our approach, and then
we analyze the preservation of the positivity of the water height for the Lax–Friedrichs based schemes. The steps undertaken
to handle the wetting/drying process are described in the same section. We devote Section 5 to the details of the implemen-
tation and choice of the parameters used in the simulations. The effectiveness of the approach proposed is demonstrated by
the very extensive numerical validation presented in Section 6. We end the paper with a summary and an outlook on the
issues still left open.

2. The shallow water system

2.1. Conservation law form

The shallow water equations (SWE) model the behavior of shallow free surface flows under the action of gravity. In con-
servation law form they can be written as:
ou
ot
þr �F ðuÞ � Sðu; x; yÞ ¼ 0 on XT ¼ X� ½0; tf � � R2 � Rþ; ð1Þ
with conserved variables, flux, and source term given by
u ¼
H

Hu

Hv

2
64

3
75 F ¼ ½F 1;F 2� ¼

Hu

Hu2 þ g H2

2

Huv
;

Hv
Huv
Hv2 þ g H2

2

2
64

3
75 S ¼ �gH

0
oBðx;yÞ

ox
oBðx;yÞ

oy

2
64

3
75; ð2Þ
where H denotes the relative water height, ~u ¼ ðu;vÞ the flow speed, g the (constant) gravity acceleration, and Bðx; yÞ the
local bathymetry or bed height. The source term models the effects on the flow of variations of the bed slope. We also intro-
duce the free surface level, or total water height Htot (see Fig. 1),
Htotðx; y; tÞ ¼ Hðx; y; tÞ þ Bðx; yÞ: ð3Þ
Fig. 1. Shallow water equations: main parameters.
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2.2. Symmetric quasi-linear form and total energy equation

Weak solutions of the shallow water system are characterized by the entropy inequality [28,50]
oE
ot
þr � ð~uEÞ þ r � ~u

gH2

2

 !
6 0; ð4Þ
where E is the total energy given by
EðuÞ ¼ H
1
2

gH þ gBþ
~u �~u

2

� �
: ð5Þ
The 6 sign in (4) becomes a strict inequality across discontinuities, and an equality on smooth classical solutions. The energy
E is convex in u, and acts for the system as a mathematical entropy, in the sense of Harten [27]. In particular, introducing the
vector of symmetrizing variables v given by [28]
vt ¼ oEðuÞ
ou

¼ ½p u v� p ¼ gH �
~u �~u

2
; ð6Þ
the system can be written in the symmetric quasi-linear form [28]
A0
ov
ot
þ A1

ov
ox
þ A2

ov
oy
� Sðv; x; yÞ ¼ 0; ð7Þ
with the notation Sðv; x; yÞ ¼ SðuðvÞ; x; yÞ and with symmetric Jacobians fAkg2
k¼0
A0 ¼
ou
ov

; A1 ¼
oF 1

ov
; A2 ¼

oF 2

ov
: ð8Þ
The total energy equation is recovered multiplying on the left (7) by vt [28]
vtA0
ov
ot
þ vtA1

ov
ox
þ vtA2

ov
oy
� vtSðv; x; yÞ ¼ vt ouðvÞ

ot
þr �F ðvÞ � Sðv; x; yÞ

� �
6 0: ð9Þ
Being symmetric, the matrix
Kn ¼ A1n1 þ A2n2; ð10Þ
has real eigenvalues, and real linearly independent eigenvectors 8n ¼ ðn1; n2Þ 2 R2. The eigenvalues of Kn are
k1 ¼~u �~n; k2;3 ¼ k1 � ak~nk; ð11Þ
with a ¼
ffiffiffiffiffiffi
gH

p
. The local Froude number defined by the ratio
Fr ¼ k
~uk
a
; ð12Þ
plays the same role as the Mach number in gas dynamics.

2.3. Exact solutions

To simplify the results section, we recall here a number of analytical solutions of the shallow water equations.
Lake at rest solution. This solution is easily obtained assuming u ¼ v ¼ 0 and integrating (1) and (2) over an arbitrary

control volume V obtaining
Z
V

oH
ot

dxdy ¼ �
I

oV

H~u �~ndl ¼ 0;
and similarly
Z
V

oðH~uÞ
ot

dxdy ¼ �
Z
V

gHrHtot dxdy:
If Htotðx; y; t ¼ 0Þ ¼ H0;8ðx; yÞ 2 X, from the arbitrariness of V, one gets the exact solution
½Htotðx; y; tÞ; uðx; y; tÞ;vðx; y; tÞ� ¼ ½H0;0; 0� 8ðx; yÞ 2 X and t P 0: ð13Þ
Note that this is independent on the shape of Bðx; yÞ, as long as rHtot is integrable.
A class of 2D potential solutions. In [41] the authors have presented a class of analytical solutions obtained by choosing

the velocity vector to be given by a potential w: ð�v ;uÞ ¼ rw. A simple steady state for the water height is obtained provided
that
Dw ¼ 0 and u
oH
ox
þ v oH

oy
¼ ow

oy
oH
ox
� ow

ox
oH
oy
¼ 0:
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A simple solution is H ¼ wþ a, with a constant. The discharge equation is then exactly satisfied if [41]:
B ¼ g�1 C � krwk2

2

 !
� w� a;
where C is another constant. We can choose w as the real part of a function f, wðx; yÞ ¼ Re f ðzÞ, where f is holomorphic in
z ¼ xþ iy. The reader is referred to [41] and to the results section for an example.

Travelling vortex solutions. In the case Bðx; yÞ ¼ 0, another class of solutions can be obtained by setting~u ¼ ~u1 þ~u0, with
~u1 constant. If, in cylindrical coordinates ðr; hÞ, we set ~u0 ¼ ðu0r ;u0hÞ ¼ ð0;u0hðrÞÞ, then:
r �~u ¼ r �~u0 ¼ 1
r

oðru0rÞ
or
þ 1

r
ou0hðrÞ

oh
¼ 0;
so that the water height equation becomes
oH
ot
þ~u1 � rH ¼ 0;
with solution Hðx; y; tÞ ¼ H0ðnðx; y; tÞÞ with n ¼ ðx; yÞ �~u1t, and with H0ðx; yÞ the initial water height profile. For the velocity
we have instead
o~u0

ot
þ ð~u1 � rÞ~u0 þ ð~u0 � rÞ~u0 þ grH0ðnÞ ¼ 0:
Clearly, one possible solution is ~u0ðx; y; tÞ ¼~u0ðnðx; y; tÞÞ, such that 8n 2 R2
ð~u0ðnÞ � rÞ~u0ðnÞ þ grH0ðnÞ ¼ 0:
Ultimately, we have to choose the initial states of the water height and of the tangential velocity, such that the last equality is
verified. A travelling vortex is obtained if one sets (in cartesian coordinates, see also [23]):
~u0 ¼
Cð1þ cosðxrcÞÞðyc � y; x� xcÞ if xrc 6 p

0 otherwise

�
;

with C the vortex intensity parameter, ðxc; ycÞ the coordinates of the vortex core, and rc the distance from the vortex core, and
x an angular wave frequency determining the width of the vortex. By integrating the velocity equation in the radial direc-
tion, we obtain for the water height:
H0ðrcÞ ¼ H1 þ
1
g

C
x

� �2ðhðxrcÞ � hðpÞÞ if xrc 6 p
0 otherwise

(
;

with
hðxÞ ¼ 2 cosðxÞ þ 2x sinðxÞ þ 1
8

cosð2xÞ þ x
4

sinð2xÞ þ 12
16

x2:
Other vortex shapes can be obtained by using different definitions of ~u0.
Thacker’s 2D periodic oscillations. In [52] two classes of exact solutions have been shown, corresponding to nonlinear

oscillations in a basin with paraboloid shape:
Bðx; yÞ ¼ BðrcÞ ¼ �H0 1� r2
c

a2

� �
;

with rc the distance from the center of the paraboloid, H0 the height of the center of the basin, and a, a parameter. Two un-
steady analytical solutions exist, for which Hðx; y; tÞ ¼maxðf ðrc; tÞ � BðrcÞ;0Þ.

The first class of solutions describes the oscillations of a planar free surface level for which:
f ðx; y; tÞ ¼ gH0

a2 ð�gþ 2ðx� xcÞ cosðxtÞ þ 2ðy� ycÞ sinðxtÞÞ;
with x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gH0=a2

p
the frequency, and g a parameter.

Another set of periodic solutions describes the curved oscillations of the free surface. In this case:
f ðrc; tÞ ¼ H0 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
1� A cosðxtÞ �

r2
c

a2 �1þ 1� A2

1� A cosðxtÞð Þ2

 ! !
;

with x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8gH0=a2

p
the frequency, and, given r0 > 0, A is the shape parameter
A ¼ a2 � r2
0

a2 þ r2
0

:
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3. Numerical discretization

We consider here the approximation of weak solutions of the two dimensional system of conservation laws
ou
ot
þr �F ðuÞ ¼ 0 on X� ½0; tf � � R2 � R; ð14Þ
with u : XT ! Rm the vector of conserved quantities, and F ¼ ½F 1;F 2� : Rm ! Rm�2 the conservative fluxes. The system is
supposed to be hyperbolic, hence for any ~n ¼ ðn1; n2Þ 2 R2;~n–~0 the matrix
Kð~n;uÞ ¼ oF 1ðuÞ
ou

n1 þ
oF 2ðuÞ

ou
n2 ¼

oF ðuÞ
ou

�~n; ð15Þ
admits a full set of real eigenvalues and linearly independent eigenvectors. When necessary to simplify the discussion, we
will also consider the scalar advection problem.
ou
ot
þ~a � ru ¼ 0: ð16Þ
Throughout the text we will make use of bold characters whenever we refer to vector quantities (unknowns, fluxes, etc.),
while in the scalar case we shall use small italic symbols.

We discretize the spatial domain X by means of an unstructured triangulation denoted by T h, the parameter h being a
reference grid spacing. In each triangle T 2 T h, we denote by ~nj the local inward normal to the edge facing node j, scaled by
the length of the edge (see Fig. 2). The local normals verify
X

j2T
~nj ¼ 0: ð17Þ
On T h, we will mainly make use of a continuous piecewise linear representation. For example, given the nodal values
ui ¼ uðxi; yiÞ we set
uhðx; y; tÞ ¼
X
i2T h

wiðx; yÞuiðtÞ; ð18Þ
with
wiðxj:yjÞ ¼ dij; rwijT ¼
~ni

2jTj ;
X
j2T

wj ¼ 1; ð19Þ
where dij is Kronecker’s delta. Often, this representation is also used for the flux F .
In time dependent simulations, we break the temporal domain ½0; tf � in a series of discrete intervals f½tn; tnþ1�gN�1

n¼0 , with
t0 ¼ 0 and tN ¼ tf . We denote by Dt the time step Dt ¼ tnþ1 � tn.

3.1. Residual distribution in the steady case

When seeking steady state solutions of (14), the schemes we consider are based on the computation and splitting of the
local element residuals /T defined as
/TðuhÞ ¼
I

oT
F hðuhÞ � n̂dl 8T 2 T h; ð20Þ
where n̂ is the outward unit normal to oT , and with F h a continuous discrete approximation of the flux. The nodal values of
the unknown are obtained by iterating until steady state the pseudo-time explicit update
unþ1
i ¼ un

i �
Dt
jSij

X
T2Di

/T
i ðun

hÞ; ð21Þ
Fig. 2. Nodal normals (left), and median dual cell Si and nodal stencil Di (right).
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with Di the stencil of node i (Fig. 2), jSij the area of the dual cell of the node i obtained as
jSij ¼
X
T2Di

jTj
3
; ð22Þ
and where the local nodal residuals or split residuals /T
j satisfy the ‘‘conservation equation”
X

j2T

/T
j ðuhÞ ¼ /TðuhÞ; 8 T 2 T h: ð23Þ
Equivalently, denoting by bj the distribution matrix of local node j, such that
/T
j ¼ bj/

T ; ð24Þ
we must have
X
j2T

bj ¼ Id; ð25Þ
Id being the m�m identity matrix. Note that the pseudo-time marching iterations (21) are ultimately a means of obtaining the
approximate solution verifying
X

T2Di

/T
i ðuhÞ ¼ 0: ð26Þ
3.2. Residual distribution for time dependent problems

For time dependent computations, schemes like (21) are, in general, not suitable. Consistent formulations are suggested
in [6,17,22,45]. Here, following [6,42], we compute a space–time residual defined as
UTðuhÞ ¼
Z tnþ1

tn

Z
T

ouh

ot
þr �F h

� �
dxdydt: ð27Þ
In particular, assuming a linear variation in time of the fluxes, we can write
UTðuhÞ ¼
Z

T
ðunþ1

h � un
hÞdxdyþ Dt

2

I
oT
F nþ1

h � n̂dlþ
I

oT
F n

h � n̂dl
� �

: ð28Þ
If we take uh linear in space, we finally have
UT ¼ jTj
3

X
j2T

ðunþ1
j � un

j Þ þ
Dt
2

/Tðunþ1
h Þ þ /Tðun

hÞ
� �

: ð29Þ
In every slab X� ½tn; tnþ1�, given un
h we compute the nodal values of unþ1

h from the algebraic system
X
T2Di

UT
i ðuhÞ ¼ 0 8T 2 T h; ð30Þ
where the UT
i s define some splitting of UTðuhÞ, that is
X

j2T

UT
j ðuhÞ ¼ UTðuhÞ: ð31Þ
As in the steady case, when possible, we denote by bj the distribution matrix of local node j, such that
UT
j ¼ bjU

T ;
X
j2T

bj ¼ Id: ð32Þ
3.3. Examples of linear first order positive schemes

3.3.1. The N scheme
When solving the steady limit of the scalar advection equation (16), one easily shows (with the notation of equation (17),

see also Fig. 2)
/T ¼
X
j2T

kjuj; kj ¼
~a �~nj

2
:

The N scheme reads
/N
i ¼ kþi ðui � uinÞ; ð33Þ
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with uin ¼ �N
P

j2T k�j uj, being N ¼ 1=
P

j2T kþj . The N scheme is a multidimensional upwind and positive scheme [20]. In par-
ticular, one can write
/N
i ¼ �

X
j2T
j–i

kþi Nk�j ðuj � ukÞ ¼
X
j2T
j–i

cT
ijðui � ujÞ; ð34Þ
with cT
ij ¼ �kþi Nk�j P 0. When combined with a positivity preserving time integration scheme this leads to a discrete max-

imum principle for the numerical solution [20].
For hyperbolic systems, one can define a matrix N scheme [53] as follows:
/N
i ¼ Kþi ðui � uinÞ; ð35Þ
where the matrix Ki is defined as
Ki ¼
1
2

oF ð�uÞ
ou

�~ni; ð36Þ
for some (arbitrary) locally linearized state �u, and with Kþi computed as usual via eigenvalue decomposition. Here, following
[18], the inflow state vector uin is computed such that the scheme is always conservative:
uin ¼ �N
X
j2T

Kþj uj � /T

 !
; ð37Þ
with the matrix N defined as
N ¼
X
j2T

Kþj

 !�1

: ð38Þ
For linear symmetric systems, the N scheme is energy stable [3]. Concerning its positivity, a simple-wave analysis has been
proposed in [7] to justify the absence of spurious numerical oscillations when using the matrix N scheme.

For time dependent problems, as in [41,42], we use, in conjunction with splitting (35) of the spatial residual, the following
splitting of (28)
UN
i ¼
jTj
3
ðunþ1

i � un
i Þ þ

Dt
2

/N
i ðunþ1

h Þ þ /N
i ðun

hÞ
� �

: ð39Þ
As remarked in [41], this corresponds to the combination of the N scheme in space with second order trapezium rule inte-
gration in time. In the case of linear scalar advection, the solution obtained with this scheme verifies a discrete maximum
principle under a constraint on the size of the time step [6,20].

The matrix N scheme is at most first order accurate and yields non-oscillatory solutions in all practical applications.

3.3.2. The Lax–Friedrichs scheme
For steady scalar advection, the Lax–Friedrichs scheme is defined as
/LF
i ¼

1
3

/T þ 1
3
a
X
j2T
i–j

ðui � ujÞ: ð40Þ
This scheme is a two dimensional generalization of the 1D Lax–Friedrichs one. We have
/LF
i ¼

1
3

X
j2T

kjuj þ
1
3
a
X
j2T
k–i

ðui � ujÞ ¼
X
j2T
j–i

cT
ijðui � ujÞ;
with cT
ij ¼ ða� kjÞ=3 P 0, provided that a P maxj2T jkjj > 0. In this case, when combined with a positivity preserving time

integration scheme, the LF scheme leads to solutions enjoying a discrete maximum principle [20]. For hyperbolic systems,
the LF scheme reads
/LF
i ¼

1
3

/T þ 1
3
a
X
j2T
j–i

ðui � ujÞ; ð41Þ
where if qð�Þ denotes the spectral radius of a matrix, a is normally chosen as [2]
a P max
j2T

qðKjÞ: ð42Þ
As for the N scheme, in the time dependent case we define a LF splitting given by
ULF
i ¼

jTj
3
ðunþ1

i � un
i Þ þ

Dt
2

/LF
i ðunþ1

h Þ þ /LF
i ðun

hÞ
� �

; ð43Þ
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corresponding to the combination of the LF scheme in space with second order trapezium rule integration in time. In the case
of linear scalar advection, the solution obtained with this scheme verifies a discrete maximum principle under a constraint
on the size of the time step [20].

The LF scheme is at most first order. In the case of the SWE, we will show later that it preserves the positivity of the water
height.

3.3.3. Limited nonlinear schemes
Nonlinear schemes are needed to combine a non-oscillatory behavior of the discrete solution (and eventually positivity

preservation) and higher accuracy. In the RD framework, the accuracy of the discretization can be formally characterized by
means of a truncation error analysis initially proposed in [1]. We omit here the details of this analysis, for which we refer to
the above mentioned reference and to [8,20,41,44], and limit ourselves to mention the two results that are of interest here.

The first is that a truncation error of the type E ¼ Ch2 will be obtained provided that the split residuals satisfy an estimate
of the type (in two space dimensions)
k/T
i k 6 Ch3 8i and 8T;
in the steady case, and
kUT
i k 6 Ch4 8i and 8T and 8½tn; tnþ1�;
in the time dependent case. In particular, these estimates are always verified by Petrov–Galerkin schemes in the form
/T
i ¼

Z
T
xT

ir �F hðuhÞdxdy;
and
UT
i ¼

Z tnþ1

tn

Z
T
xT

i
ouh

ot
þr �F hðuhÞ

� �
dxdydt;
in the time dependent case, where the xT
i s are a set of uniformly bounded test functions such that
X

j2T

xT
j ¼ Id:
As a particular case, schemes that read
/T
i ¼ bT

i /
T ðUT

i ¼ bT
i U

T in the time dependent caseÞ;
with uniformly bounded distribution matrices bT
i , are formally second order accurate. Schemes that belong to this class are of-

ten said to be linearity preserving or LP.
In this study, we adopt the construction proposed in [7,6]. The idea is to start with a linear first order positivity preserving

scheme, and to devise a way to map its local residuals onto a set of nonlinear positivity and linearity preserving residuals. Note
that by positivity preserving scheme here we intend one that, for scalar advection and in the steady case, can be written as
/T
i ¼

X
j2T

cT
ijðui � ujÞ with cij P 0;
and similarly in the time dependent case (see [20] for more details). The reader is referred to [1,22,23,33] and references
therein for a review of other techniques.

In the scalar case, the limiting technique consists in mapping the distribution coefficients bP
j of a positivity preserving

scheme onto nonlinear bounded distribution coefficients b	j . The nonlinear mapping should verify the following
properties:
jb	j j < C <1; j ¼ 1; . . . ;3 ð44Þ
bP

j ¼ 0) b	j ¼ 0; j ¼ 1; . . . ;3 ð45Þ
bP

j b
	
j P 0; j ¼ 1; . . . ;3 ð46ÞX

j2T

b	j ¼ 1 ð47Þ
Clearly, (44) is the LP condition, while (45) and (46) ensure the positivity preservation property. For example, in the steady
case we can write
/	i ¼
/	i
/

/

/P
i

/P
i ¼

b	i
bP

i

X
j2T
j–i

cijðui � ujÞ ¼
X
j2T
j–i

c	ijðui � ujÞ;
with c	ij ¼
b	i
bP

i
cij. Since cij P 0, then (46) guarantees c	ij P 0, hence the positivity of the resulting scheme.
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Concerning the mapping, a common choice, which is adopted here too, is to use the so-called PSI limiter
1 At l
b	i ¼
maxðbP

i ; 0ÞP
j2T maxðbP

j ;0Þ
: ð48Þ
For scalar steady problems, this limiter has been very successful when applied to the N scheme, in which case we recover the
PSI scheme of Struijs [48,38]. In this case, here we will speak of the limited N (LN) scheme. We will instead refer to the lim-
ited Lax–Friedrichs (LLF) scheme, as to the one obtained by limiting (40). Note that, when using (48), if bP

j 6 0, then b	j ¼ 0,
otherwise one easily shows that b	j 6 bP

j , hence
c	j ¼
b	j
bP

j

2 ½0;1�: ð49Þ
For systems, as in [7,6], we decompose the residual on the basis of the solution space given by the eigenvectors of the flux
Jacobian. On each triangle, fixed a direction~n, we compute flrgm

r¼1 and frrgm
r¼1, the left and right eigenvectors of Kjð~n; �uÞ (cf.

Eq. (15)), evaluated on �u, the locally averaged state of uh. We then project the residuals on flrgm
r¼1:
uT
r ¼ lr/T and uP

r;j ¼ lr/P
j : ð50Þ
Each component r is now treated as a scalar residual. We compute bP
r;j ¼ u P

r;j=uT
r, and use (48) to get nonlinear coefficients

b	r;j. Finally, we set
u	r;j ¼ b	r;j/
T
r and /	j ¼

X
r

u	r;jrr: ð51Þ
We use the same construction in the time dependent case, obviously replacing /T , and /P
j by UT , and UP

j .
The resulting scheme is LP by construction. Its stability on simple-waves is studied in [7]. We will show later that, in the

case of the SWE, this construction allows to build discretizations preserving the positivity of the relative water height.
In this paper, the direction~n needed for this construction is always taken to be the direction of the local velocity vector~u, com-

puted in each element from a locally averaged state of the conservative variables u.

3.3.4. Stability and dissipation
Stability and convergence proofs are often based on bounds on the L2 norm of the solution (linear problems), or on en-

tropy inequalities (such as (4)) [12,28,50]. The attempt to formulate discrete variants of these stability criteria for RD has
not been very fruitful up to now, and few results exist (see e.g. [3]).

The relevant issue is really making sure of the existence and uniqueness of the discrete solution, and of its convergence
with the mesh parameter h. This is ultimately linked to the properties of the discrete algebraic Eq. (26) (or (30)). Consider for
example the case of the steady scalar advection equation. One way to look at the problem is that if we can rewrite the steady
discrete Eq. (26) as linear algebraic system1
Ahuh ¼ f ; ð52Þ
we should be sure that the matrix Ah is invertible. This issue is studied in [2]. For positivity preserving multidimensional up-
wind RD schemes such as the N and the LN schemes, in the reference it is shown that the matrix Ah admits a block trian-
gular decomposition, and that each block Ang is invertible. To generalize the analysis to non-upwind discretizations such as
for example the LLF scheme, in [2] it is suggested to replace (52) with the iterative update
unþ1 ¼ un �xðAhun � f Þ with x 2 Rþ:
This procedure will converge if, for some 0 < r < 1, one has
kðId�xAhÞvk2
6 rkvk2

;

for any arbitrary v 2 RM , and M denoting the total number of unknowns. Developing the last expression, one ends up with
the requirement
v tAhv P
1� r
2x
kvk2 þx

2
kAhvk2

> Chkvk2 P 0;
which brings us back to the necessity showing the coercivity of the discretization, and/or of establishing a L2 stability esti-
mate of the type v tAhv > 0.

For linear first order RD schemes such as the N and LF ones, this estimate can be easily demonstrated [3,20]. The situ-
ation is less clear for the limited schemes. In [11], for example, some sources of instability (in the L2 sense seen above) related
to the limiting process are pointed out for the scalar LN scheme. However, this scheme yields in practice good iterative and
east for smooth solutions, eventually by means of a linearization of the nonlinear algebraic system.
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grid convergence. This is in line with the result of [2]: scalar multidimensional upwind schemes lead to well posed algebraic
equations.

The LLF scheme, instead, shows in practice poor convergence. This is observed especially on smooth problems, where one
obtains wiggly numerical solutions, symptom of the presence of undamped spurious modes.

To cure this problem, we follow [2]. The idea is to add a stabilizing upwind bias to the discretization, by means of a
streamline dissipation term:
/	si ¼ b	i /
T þ hðT h; uhÞ

Z
T
ð~a � rwiÞð~a � ruÞdxdy ¼ b	i /

T þ hðT h; uhÞ
jTj ki/

T ; ð53Þ
where the additional superscript s stands for stabilized. The rationale for this modification is that the energy production
associated to the ‘‘stabilized” scheme reads now (cf. analysis above, and see [2,20] for details)
v tAv ¼
X

T2T h

X
j2T

v j b	j /
T þ hðT h; vhÞ

Z
T
ð~a � rwjÞð~a � rvhÞdxdy

� �

¼
Z

oX

v2
h

2
j~a � n̂jdlþ

X
T2T h

Z
T
ðhTð~n	 � rvhÞð~a � rvhÞ þ hðT h;vhÞð~a � rvhÞ2Þ;

ð54Þ
where as we shall see shortly, the vector~n	 depends on the distance between the nodes of T and its gravity center, and on the
b	j s. Independently on this, the important point is that now, for some definition of hðT h;uhÞP 0, the condition v tAv > 0 will
be verified.

The parameter hðT h;uhÞ is introduced for two reasons. One is to provide a correct scaling of the streamline dissipation
term with respect to mesh size and advection speed, so that the additional term has the same dimensions as the element
residual /T (and equivalently of the limited nonlinear residual b	i /

T ). The other is to make sure that the additional term is
only added in correspondence of smooth regions of the solution. For this reason, from now on we shall write
hðT h;uhÞ ¼ sðT hÞ�ðuhÞ;
where sðT hÞ is basically the standard streamline dissipation stabilization parameter, and �ðuhÞ is the smoothness sensor.
Definitions for these parameters will be given in Section 5.

In the time dependent case, following the initial developments of [40], we use a similar technique. To illustrate how we
proceed, let us assume to be only interested in smooth solutions, so that we can work with a locally linearized constant coef-
ficients quasi-linear problem. To devise a consistent modification of the mass matrix, we make use of a well-known analogy
between RD and Petrov–Galerkin. Other formulations might however be thought of, as the geometrical analysis of [22]
shows. Different ways exist to present the analogy between RD and finite elements (see e.g. [35,24,6,43]). In the simplest
setting, one recasts a linearity preserving scheme as a perturbation of the Galerkin finite element scheme:
X

T2Di

bi/
T ¼

Z
X

wi~a � ruh dxdyþ
X

T2T h

Z
T

dT
i
~a � ruh dxdy ¼ 0;
with dT
i ¼ bi � 1=3 if i 2 T , dT

i ¼ 0 otherwise. This corresponds to chose as a test function the quantity
xT
i ¼ wi þ dT

i ;
with wi the basis function (19). Whenever bi P 0 8i 2 T , due to the properties of the linear basis functions (19), one can find a
unique point PT 2 T such that 8j 2 T we have wjðPTÞ ¼ bj. Denoting by GT the gravity center of the element, we can use the
linearity of wi to re-write the Petrov–Galerkin scheme as
Z

X
wi~a � ruh dxdyþ

X
T2T h

hT

Z
T

~n � rwi~a � ruh dxdy ¼ 0;
with hT a local mesh size, and hT
~n ¼ PT � GT . This is equivalent to rewriting the test function as
xT
i ¼ wi þ hT

~n � rwi;
which now closely reminds of the SUPG test function. However, let now~n	 be the direction giving the distribution bias cor-
responding to a limited scheme (cf. Eq. (54)). Since the limiting process does not guarantee any control over the location of
PT , the vector~n	 generally does not introduce a bias in the streamline direction, that is~n	 is not necessarily in the direction of
the propagation speed~a. In the case of the LLF scheme,~n	 is likely to have the direction of the largest component of the solu-
tion gradient, that is (for steady advection) the cross-wind direction. It is not unlikely, however, that ~n	 might even point
upstream. This leads to poor stability. The cure proposed in [2] restores the correct direction in the bias of the discretization.

To go to the time dependent case, we first discretize in time with the trapezium scheme:

2
Dt

unþ1 þ~a � runþ1 ¼ 2
Dt

un �~a � run:
Being un known, we can work with the model equation
cuþ~a � ru ¼ Sðx; yÞ;
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with c P 0. We apply the Petrov–Galerkin formulation to this non-homogeneous advection–reaction problem to get,
neglecting the contribution of the source term on the right hand side, and after some manipulations:
X

T2Di

Ui ¼ 0;
where
Ui ¼ bi

Z
T

cuh þ~a � ruhð Þdxdyþ
Z

T
wi �

1
3

� �
cuh dxdyþ

Z
T

wi �
1
3

� �
~a � ruh dxdy:
However, for a constant ~a, the last term vanishes due to the linear variation of uh, and to the relation
Z
T

wi �
1
3

� �
dxdy ¼ 0: ð55Þ
Ultimately we get
Ui ¼ bi

Z
T

cuh þ~a � ruhð Þdxdyþ
Z

T
wi �

1
3

� �
cuh dxdy:
Taking now bi ¼ b	i , given by a limited scheme, and adding the streamline stabilization term, one ends with
U	si ¼ b	i þ
sðT hÞ�ðuhÞ
jTj ki

� �Z
T

cuh þ~a � ruhð Þdxdyþ
Z

T
wi �

1
3

� �
cuh dxdy:
In the last expression, we can identify the contribution of the nonlinear limited scheme, plus the streamline upwind bias,
plus the last term that can be recast as
Z

T
wi �

1
3

� �
cuh dxdy ¼ c

jTj
36

X
j2T

Dijuj;
where the matrix D is symmetric positive semi-definite and given by
D ¼
2 �1 �1
�1 2 �1
�1 �1 2

2
64

3
75:
The additional energy production due to this term reads (cf. analysis above, and see [2,20] for details)
v tADv ¼
X

T2T h

c
jTj
36

X
j2T

v j

X
k2T

Djkvk ¼
X

T2T h

c
jTj
36

1
2

X
i;j2T

i–j

ðv i � v jÞ2 P 0;
which shows its dissipative character.
We now go back to our original purpose of stabilizing the nonlinear limited scheme in the time dependent case. Firstly we

note that the previous analysis only applies in smooth areas of the solution. This means that the additional stabilization
operator should also be premultiplied by �ðuhÞ. Repeating the development for the time dependent advection equation,
and including this last remark, we end up with
U	si ¼ b	i U
T þ �ðuhÞ

ki

jTj sðT hÞUT þ jTj
36

X
j2T

Dijðunþ1
j � un

j Þ
 !

; ð56Þ
where for �ðuhÞ ¼ 1 he get back exactly the Petrov–Galerkin scheme applied to the time dependent equation. In general, �ðuhÞ
and sðT hÞ being constant in each element, we can write for a locally linear (or linearized) problem
U	si ¼
Z tnþ1

tn

Z
T
xT

i
ouh

ot
þ~a � ruh

� �
dxdydt with xT

i ¼ b	i þ �ðuhÞ ~a � rwisðT hÞ þ wi �
1
3

� �
; ð57Þ
which, even though not in the form of a linearity preserving scheme, does verify the second-order of accuracy conditions for
time dependent problems [41,44] thanks to the uniform boundedness of xT

i (cf. Section 3.3.3).
Concerning the case of a hyperbolic system, to be rigorous the additional terms should be evaluated in terms of the

quasi-linear form in entropy variables in order to actually yield a meaningful dissipative operator (cf. Section 2.2 and
[12]). However, in our case these terms are actually active only in smooth regions of the solution. Moreover, their defini-
tion is such that they do not influence the conservative character of the discretization. Indeed, using (19) and (17), we
immediately get:
X
j2T

Z
T

~a � rwjsðT hÞ
ou
ot
þ~a � ruh

� �
dxdy ¼ 0;
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and
X
j2T

Z
T

wj �
1
3

� �
ou
ot
þ~a � ruh

� �
dxdy ¼ 0:
This gives some freedom in the choice of the approximation of these terms for systems. In particular, we can evaluate them
on a locally linearized quasi-linear form of the equations, in a chosen set of variables (see also the discussion in [30,29]). This
corresponds to the evaluation of the streamline dissipation integral with a one point quadrature formula, which, as the anal-
ysis made in [5] shows, is sufficient to yield a well posed set of algebraic equations in the case of second order schemes. With
this choice we obtain
�ðuhÞ
Z

T

oF ð�uÞ
ou

� rwj sðT hÞ
oF ð�uÞ

ou
� ruh dxdy ¼ �ðuhÞ

Ki

jTjsðT hÞ/nc;
in the steady case, while in the time dependent case we have
�ðuhÞ
R tnþ1

tn

R
T

oF ð�uÞ
ou � rwjsðT hÞ þ wiI� I

3

� 	
ouh
ot þ

oF ð�uÞ
ou � ruh

� 	
dxdydt ¼

�ðuhÞ Ki
jTjsðT hÞUnc þ jTj36

P
j2T

Dijðunþ1
j � un

j Þ
 !

;

with the non-conservative residuals
/nc ¼
R

T
oF ð�uÞ

ou � ruh dxdy ¼
P
j2T

Kjð�uÞuj

Unc ¼
R tnþ1

tn

R
T

ouh
ot þ

oF ð�uÞ
ou � ruh

� 	
dxdy ¼ jTj3

P
j2T
ðunþ1

j � un
j Þ þ Dt

2 ð/
ncðun

hÞ þ /ncðunþ1
h ÞÞ;
�u being a local (constant) average state of the state vector u. Note that now sðT hÞ is in general a stabilization matrix. In prac-
tice, the additional terms become active only in smooth regions of the solution, we have simplified things by replacing the
non-conservative residuals /nc with the conservative local approximations /T . In the steady case, this leads to the stabilized
nonlinear schemes defined by:
/	si ¼ b	i /
T þ �ðuhÞ

Ki

jTjsðT hÞ/T ; ð58Þ
where the superscript s stands for stabilized. For time dependent simulations we use instead:
U	si ¼ b	i U
T þ �ðuhÞ

Ki

jTjsðT hÞUT þ jTj
36

X
j2T

Dijðunþ1
j � un

j Þ
 !

: ð59Þ
Once more we recall that in these formulas the stabilization terms arise from the application of the Petrov–Galerkin analogy
(57) to a locally linearized (constant coefficients) quasi-linear form of the system.

Note that, as shown in [2], and as we shall see in some of the numerical tests, for systems also the matrix limited N
scheme is subject to the same stability problems of the LLF scheme, and needs the addition of the stabilization operators.
In the following, we will refer to the limited and stabilized schemes used in this paper as to the LNs and LLFs schemes.

As a last remark, we note that including the stabilization terms leads to the loss of formal monotonicity (viz. positivity
preservation). Numerical results show an essentially non-oscillatory behavior, with very small oscillations across disconti-
nuities [2,40]. To minimize this side effect, the parameter �ðuhÞ is chosen such that �ðuhÞ 
 h in discontinuities, while
�ðuhÞ 
 1 elsewhere. Details of how to compute �ðuhÞ and sðT hÞ will be given in Section 5. To simplify the notation, in
the following we will omit the dependence of these parameters on solution and mesh, simply writing �ðuhÞ ¼ �h, and
sðT hÞ ¼ sh.

3.3.5. Obtaining the solution
For the positivity analysis of Section 4.2, it is useful to introduce now the technique used to get the nodal values of the

discrete solution. As anticipated in Section 3.1, we employ an explicit pseudo-time iterative technique. In the steady case,
given the nodal values of the initial solution u0

i , we set 8p P 0
/p ¼ /TðupÞ;
with p the pseudo-time step number, and then we repeat
upþ1
i ¼ up

i �
Ds
jSij

X
T2Di

/
p
i ; ð60Þ
where Ds is the pseudo time step, and the /
p
i s representing the local splitting of /p. We continue this procedure until we have

convergence in some norm of the residual.
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In the time dependent case, we use the same technique. At each time step n, we set unþ1;0
i ¼ un

i and
Up ¼ UTðunþ1;p;unÞ;
with p the pseudo time step number. Now we repeat
unþ1;pþ1
i ¼ unþ1;p

i � Ds
jSij

X
T2Di

Up
i ; ð61Þ
where Ds is the pseudo time step, and the Up
i s representing the local splitting of Up. We continue this procedure until we

have convergence in some norm of the residual (see Section 5 for more details).

4. Application to the SWE

To apply the schemes discussed in Section 3 to the SWE we have to take into account the source term modeling
the variation of the bathymetry. The analysis reported in [20,41] shows that, in general, central and pointwise treat-
ments of source terms lead to a loss of accuracy. Consistent discretizations are instead obtained by introducing the
source term in the definition of the cell-residual. So, when seeking a steady solution of the SWE, we define the element
residual /T as
/TðuhÞ ¼
Z

T
r �F hðuhÞ � Shðuh; x; yÞð Þdxdy ¼

I
oT
F hðuhÞ � n̂dl�

Z
T
Shðuh; x; yÞdxdy: ð62Þ
Similarly, in the time dependent case, the space–time residual UTðuhÞ is computed as
UTðuhÞ ¼
Z tnþ1

tn

Z
T

ouh

ot
þr �F h � Shðuh; x; yÞ

� �
dxdydt ¼ jTj

3

X
j2T

ðunþ1
j � un

j Þ þ
Dt
2
ð/Tðunþ1

h Þ þ /Tðun
hÞÞ; ð63Þ
with /T as in (62). Starting from these definitions, we proceed exactly as illustrated in Section 3. In particular, we note that
the definitions of the N scheme and of the Lax–Friedrichs scheme remain unchanged, the presence of the source term being
taken into account directly in the definition of the residual. The limiting, and the stabilization steps (see Sections 3.3.3, 3.3.4)
remain unchanged, except at the wet/dry interface which will be discussed shortly.

In the following sections, we study the properties of the RD discretizations considered in this paper, with respect to their
application to the SWE. Three main aspects are discussed:

� Well-balancedness,
� preservation of the positivity of the water height H,
� treatment of the wetting/drying interface.

4.1. Well-balancedness

When solving the SWE the numerical balance between flux divergence and the source term modeling the bed slope var-
iation is very important. The respect of this balance is known in literature as the well-balancedness of the discretization. The
analysis of the accuracy of RD discretizations in presence of source terms reported in [41,20] shows that, for a linear spatial
approximation, and as long as we use a linearity preserving scheme, combined with definition (62) of the residual, we retain
the Oðh2Þ truncation error when approximating a regular solution.

In addition to this, in [20] it has been shown that if the source term is discretized independently of the fluxes, second
order of accuracy is in general lost, with the unique exception of central schemes. As in the homogeneous case, a good
design criterion is to look for linearity preserving discretizations having bounded distribution coefficients. However, the
presence of the additional stabilization terms requires a slight generalization of the discussion made in [41,20], concern-
ing the SWE.

We start here from the actual evaluation of the spatial residual /T . As in [41], we make the hypothesis that for the SWE the
integrals in (62) are evaluated exactly with respect to the linear approximation of the water height Hh. This leads to the following
formulas for the spatial residual (cf. Eq. (2)):
/T ¼
I

oT

Hhð~uh �~nÞ
Hh~uhð~uh �~nÞ


 �
dlþ 1

2

I
oT

0
gH2

h �~n


 �
dlþ

Z
T

Hh
0
grBh


 �
dxdy

¼
I

oT

Hhð~uh �~nÞ
Hh~uhð~uh �~nÞ


 �
dlþ

Z
T

gHh

0
rHh


 �
dxdyþ

Z
T

gHh

0
rBh


 �
dxdy

¼
I

oT

Hhð~uh �~nÞ
Hh~uhð~uh �~nÞ


 �
dlþ gH

2

X
j2T

0
ðHj þ BjÞ~nj


 �
;

ð64Þ
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where Gauss–Green’s formula has been used to pass from the first to the second line, and exact integration with respect to
the linear approximation (18) (cf. also equation (19)) to get to the final expression, in which
H ¼ 1
3

X
j2T

Hj:
The interesting result is that, due to (17), when evaluated with (64), the residual /TðuhÞ vanishes identically when uh is the
lake at rest solution, that is when~uh ¼ 0 and Hðx; yÞ þ Bðx; yÞ ¼ H0, with H0 a constant. This leads to the proposition (see [41]
for more):

Proposition 4.1. Provided that the same numerical representation is used for the water height and for the local height of the
bottom Bðx; yÞ, and that the local residual is evaluated exactly with respect to this numerical representation of H and B, linearity
preserving RD schemes preserve exactly the lake at rest solution, independently on topology of the mesh, character of Bðx; yÞ and
polynomial degree of the approximation.

For steady calculations, last proposition applies to the stabilized schemes of type (58). Scheme (56), however, is not in the
form of a linearity preserving distribution, so we need to generalize Proposition 4.1.

We start by a remark concerning the form of the stabilization used for the SWE. As in the general case, this is done using a
locally linearized (constant coefficients) form of the quasi-linear form. In particular, let F c be the convective part of the flux
F c ¼
H~u

H~u�~u


 �
:

On an element T, given the local average �u, we consider the linearized quasi-linear form of the SWE:
o

ot
H

H~u


 �
þ oF cð�uÞ

ou
� r H

H~u


 �
þ

0 0
gH 0

� �
� r Htot

H~u


 �
¼ 0:
For a linear representation of H, B and H~u, the application of the Petrov–Galerkin formula (57) yields
U	si ¼ b	i U
nc þ �h

Ki

jTjshU
nc þ jTj

36

X
j2T

Dijðunþ1
j � un

j Þ
 !

;

where
Unc ¼
Z tnþ1

tn

Z
T

o

ot
H

H~u


 �
h

þ oF cð�uÞ
ou

� r H

H~u


 �
h

þ
0 0
gH 0

� �
� r Htot

H~u


 �
h

� �
dxdydt:
As done before, we now replace the non-conservative residual by its conservative approximation, so that we end up again with
U	si ¼ b	i U
T þ �h

Ki

jTjshU
T þ jTj

36

X
j2T

Dijðunþ1
j � un

j Þ
 !

; ð65Þ
where
UT ¼ jTj
3

X
j2T

ðunþ1
j � un

j Þ þ
Dt
2

/Tðun
hÞ þ /Tðunþ1

h Þ
� �

;

with /T as in (64). Note in particular, that for the SWE the difference between the non-conservative approximation of the residual
and its conservative one is in the evaluation of the integral of the convective flux F c (cf. equation (64)). The gravitational terms are
evaluated in the exact same way in the two cases.

Concerning the properties of the scheme, as recalled in Section 3.3.3, the analysis of [41] shows that also for non-homo-
geneous problems schemes that can be recast as
UT
i ¼

Z tnþ1

tn

Z
T
xT

i
ouh

ot
þr �F hðuhÞ � Shðuh; x; yÞ

� �
dxdydt;
verify the formal condition for having a Oðh2Þ truncation error (hence second-order of accuracy), provided that xT
i is uni-

formly bounded [41,20]. Additionally, we immediately see that if uh is the lake at rest solution, that is if ~uh ¼ 0, and
Hhðx; yÞ þ Bhðx; yÞ ¼ H0, with H0 constant, then scheme (65) leads to the discrete equation
Mðbi;T h;uhÞðUnþ1 � UnÞ ¼ 0; ð66Þ
where Ui ¼ ui. So, provided that the mass matrix Mðbi;T h;uhÞ is invertible, scheme (65) will preserve this solution. In a
more general way, note that, provided that xT

i is uniformly bounded and locally differentiable, and that we integrate the
equations exactly with respect to the linear variation of Hh and Bh, on the lake at rest solution we have
Z tnþ1

tn

Z
T
xT

ir �F cðuhÞdxdydt þ
Z tnþ1

tn

Z
T

gHhxT
i

0
rðHh þ BhÞ


 �
dxdydt

¼
Z tnþ1

tn

I
oT

xT
i F

cðuhÞ �~ndldt �
Z tnþ1

tn

Z
T
F cðuhÞ � rxT

i dxdydt þ
Z tnþ1

tn

Z
T

gHhxT
i

0
rH0


 �
dxdydt ¼ 0;
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since F cðuhÞ vanishes on the lake at rest state, and since any consistent interpolation gives
rH0 ¼ H0

X
j2T

rwj ¼ 0:
This leads again to a discrete equation of the type (66), and provided that the mass matrix is invertible, to the preservation of
the lake at rest state. This proves the following generalization of proposition 4.1.

Proposition 4.2. Provided that the same numerical representation is used for the water height and for the local height of the
bottom Bðx; yÞ, and that all integrals are evaluated exactly with respect to this numerical representation of H and B, schemes that
can be recast as
Z tf

0

Z
X
xi

ouh

ot
þr �F hðuhÞ � Shðuh; x; yÞ

� �
dxdydt;
preserve exactly the lake at rest solution, independently on topology of the mesh, character of Bðx; yÞ and polynomial degree of the
approximation, provided that
xi ¼
X

T2T h

xT
i

is uniformly bounded and locally differentiable, and that the associated mass matrix is invertible.

The purpose of the stabilization is precisely to ensure that the mass matrix of the RD discretization is invertible. Even
though no analytical proof of this fact is given in this paper (we refer however the reader to [13] for the analysis of the mass
matrix of the SUPG scheme which has close resemblance to the one of scheme (65)), the numerical results will show that
proposition 4.2 is indeed verified by our schemes, and that, moreover, we achieve grid convergence with the expected rate.

4.2. Positivity of the water height

We consider now the preservation of the positivity of the water height. We analyze the Lax–Friedrichs scheme to show
that, under a constraint on the size of the time step, it can indeed ensure this property. The hypotheses under which this is
true for the LLF scheme are given.

In the following analysis, we look for the conditions under which, starting from non-negative nodal values of the water
height, we get a positive value of H in each node of the mesh, when using the explicit iteration schemes (21) or (61).

Explicit Euler update: LF scheme. We start with the explicit update (21). Using (41), we have for the water height:
Hnþ1
i ¼ Hn

i �
Dt
jSij

X
T2Di

1
3

/T
Hn þ 1

3
aT

X
j2T
j–i

ðHn
i � Hn

j Þ

0
BB@

1
CCA; ð67Þ
where the sub-script T has been added to the LF dissipation coefficient to make the exposition clearer. For a linear approx-
imation of uh we have
/T
H ¼

I
oT

H~u � n̂dl ¼ 1
2

X
j2T

Hj~uj �~nj: ð68Þ
Using this expression the update (67) becomes
Hnþ1
i ¼ 1� Dt

jSij
1
3

X
T2Di

ð
~ui �~ni

2
þ 2aTÞ

 !
Hn

i þ
1
3

Dt
jSij

X
T2Di

X
j2T
j–i

aT �
~uj �~nj

2

� �
Hn

j : ð69Þ
Due to definition of aT in (42) (see also (11)) we have
aT �
~uj �~nj

2
> 0; ð70Þ
so the quantity in parentheses in the second term of (69) is positive. For the coefficient of Hn
i we can write
1� Dt
jSij

1
3

X
T2Di

~ui �~ni

2
þ 2aT

� �
P 1� Dt

jSij
X
T2Di

aT ; ð71Þ
so that if
Dt <
jSijP
T2Di

aT
; ð72Þ
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then given positive nodal values of H at time tn, Hnþ1
i will be positive 8i. This shows that the LF scheme preserves the pos-

itivity of the water height. We set
DtEE ¼ jSijP
T2Di

aT
; ð73Þ
where the superscript EE stands for Explicit Euler. In practice, we compute the time step as
Dt ¼ mDtEE; m < 1: ð74Þ
Explicit Euler update: LLF scheme. Concerning the nonlinear LLF scheme, one can easily see that provided that the limiting is
performed directly on the water height equation, and if (74) is satisfied, the LLF scheme preserves the positivity of the water
height. This is basically a consequence of property (49). In fact, proceeding as before, we have for the LLF scheme
Hnþ1
i ¼ 1� Dt

jSij
X
T2Di

c	i
X
j2T
j–i

cLF
ij

0
BB@

1
CCAHn

i þ
Dt
jSij

X
T2Di

c	i
X
j2T
j–i

cLF
ij Hn

j

P 1� Dt
jSij

X
T2Di

c	i aT

 !
Hn

i þ
Dt
jSij

X
T2Di

c	i
X
j2T
j–i

cLF
ij Hn

j :

ð75Þ
Clearly, if (74)is verified, and using (49), we have
Dt <
jSijP
T2Di

aT
6

jSijP
T2Di

c	i aT
:

Hence, condition (74) is enough to guarantee the positivity of the water height when using the LLF scheme.
Trapezium time integration: LF scheme. We will now try to carry over our analysis to the time dependent case. The time

discretizations used in this case are implicit. However, we can exploit the explicit pseudo-time stepping solution strategy
(61) to simplify the analysis. With the notation of §3.3.5, we have
Hnþ1;pþ1
i ¼ Hnþ1;p

i � DsðHnþ1;p
i � Hn

i Þ

� DsDt
2jSij

X
T2Di

1
3

/T
Hnþ1;p þ

1
3
aT

X
j2T
j–i

ðHnþ1;p
i � Hnþ1;p

j Þ

0
BB@

1
CCA

� DsDt
2jSij

X
T2Di

1
3

/T
Hn þ 1

3
aT

X
j2T
j–i

ðHn
i � Hn

j Þ

0
BB@

1
CCA:

ð76Þ
Using again (68) and rearranging terms we obtain
Hnþ1;pþ1
i ¼ 1� Ds 1þ 1

3
Dt

2jSij
X
T2Di

~unþ1;p
i �~ni

2
þ 2aT

 !" #( )
Hnþ1;p

i þ Ds 1� 1
3

Dt
2jSij

X
T2Di

~un
i �~ni

2
þ 2aT

� �" #
Hn

i þ
1
3

� DsDt
2jSij

X
T2Di

X
j2T
j–i

aT �
~unþ1;p

j �~nj

2

 !
Hnþ1;p

j þ 1
3

DsDt
2jSij

X
T2Di

X
j2T
j–i

aT �
~un

j �~nj

2

 !
Hn

j : ð77Þ
If we define aT according to (42), and we take the maximum of its values at times tn and tnþ1, we are sure of the positivity of
the last two terms (provided that we have no negative water heights at time tn, and at the pth iteration). Concerning the
terms containing Hn

i , we proceed as before to get
1� 1
3

Dt
2jSij

X
T2Di

~un
i �~ni

2
þ 2aT

� �
P 1� Dt

2jSij
X
T2Di

aT :
Provided that
Dt <
2jSijP
T2Di

aT
¼ 2DtEE;
these terms will give a positive contribution. Note that, not surprisingly for the trapezium scheme, last condition is twice as
large as the one given by the explicit Euler discretization (Eq. (74)). In practice, we set
Dt ¼ 2mDtEE; m < 1: ð78Þ
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At last, we consider the terms containing Hnþ1;p
i . Again we use the estimate
1� Ds 1þ 1
3

Dt
2jSij

X
T2Di

~unþ1;p
i �~ni

2
þ 2aT

 !" #
P 1� Ds 1þ Dt

2jSij
X
T2Di

aT

" #
:

So that the positivity of the LF scheme with trapezium time integration requires the satisfaction of the pseudo-time step
constraint
Ds <
1

1þ Dt
2jSi j
P

T2Di
aT
¼ 1

1þ m
: ð79Þ
Trapezium time integration: LLF scheme (space–time). Consider now the space time nonlinear discretization obtained by
limiting the LF scheme with trapezium time integration (cf. section 3.4). As before, we can show that provided that the lim-
iting is performed directly on the water height equation, the positivity of the LLF scheme is a consequence of property (49). In par-
ticular, after a few manipulations, we can rewrite the update for the LLF scheme with trapezium time integration as
Hnþ1;pþ1
i ¼ 1� Ds

X
T2Di

c	i
3jSij

jTj þ Dt
2

~unþ1;p
i �~ni

2
þ 2aT

 !" #( )
Hnþ1;p

i þ Ds
X
T2Di

c	i
3jSij

jTj � Dt
2

~un
i �~ni

2
þ 2aT

� �
 �
Hn

i

þ 1
3

DsDt
2jSij

X
T2Di

c	i
X
j2T
j–i

aT �
~unþ1;p

j �~nj

2

 !
Hnþ1;p

j þ 1
3

DsDt
2jSij

X
T2Di

c	i
X
j2T
j–i

aT �
~un

j �~nj

2

 !
Hn

j : ð80Þ
Obviously, the important terms to look at are the ones multiplying Hi, the definition of aT assuring the positivity of the ‘‘off-
diagonal” terms. Due to the local character of the limiting procedure, we are obliged to proceed in an element-wise fashion.
In particular, proceeding as before, one immediately shows that the term multiplying Hn

i is positive if in every element we
make sure that
Dt 6
2jTj
3aT

;

leading to the modified time step constraint
Dt ¼ 2m min
T2T h

jTj
3aT

m < 1: ð81Þ
Note that this constraint corresponds to the local positivity of the LF scheme with trapezium time integration [20]. Concern-
ing the term multiplying Hnþ1;p

i , setting in each element
mT ¼ 3aTDt
2jTj ;
we immediately see that the positivity of H will be preserved provided that we can ensure that
1� Ds
X
T2Di

c	i jTj
3jSij

1þ mT

3aT
ð
~unþ1;p

i �~ni

2
þ 2aTÞ

" #
P 0:
Since aT P~unþ1;p
i �~ni=2, and c	i 6 1, we have
c	i jTj
3jSij

1þ mT

3aT

~unþ1;p
i �~ni

2
þ 2aT

 !" #
6

c	i jTj
3jSij

ð1þ mTÞ 6 jTj
3jSij

min
T2Di

ð1þ mTÞ:
Finally, using (22) we end up with the result that the LLF scheme with trapezium time integration will preserve the positivity
of the water height provided that for each node
Ds 6 min
T2Di

1
1þ mT

: ð82Þ
Note that, due to the locality of the analysis and to the regular use of the definition of aT to bound terms, the conditions
obtained (Eqs. (81) and (82)) are probably over-constraining.

4.3. Handling dry and partially dry cells

This section is devoted to the description of the treatment of dry and partially dry cells. A dry cell is one in which
Hj ¼ 0;8j 2 T . When this happens, it is easy to see that the residual and the split residuals are zero, since solution vector,
fluxes, and source term are identically zero over the element. Hence, completely dry elements pose no particular problem.
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Most numerical problems arise in partially dry cells. These are cells in which Hj ¼ 0 for some of the nodes and Hk > 0 at
least in one vertex. We have to distinguish between three situations. Cells T with constant bed height Bj ¼ B 8j are called flat.
If instead
Fig. 3.
Bottom
Hj ¼ 0; Hk > 0 and Bj > Bk j; k 2 T;
we speak of cells with adverse slope, whereas if
Hj ¼ 0; Hk > 0 and Bj < Bk j; k 2 T;
we speak of downward slope. The issues we have to solve in these front cells are the following:

1. Detection of dry nodes. In practice, we encounter cells in which some nodes have heights Hj – 0, however Hj � 1. We
should make sure that these cells are treated properly.

2. Positivity. We have to ensure that our schemes always keep positive values of the water height.
3. Artificial velocities in front elements. Along the wetting–drying front one typically observes two behaviors. For flat cells or

downward slopes, the schemes behave like one expects: the water runs in direction of the dry nodes. For adverse slopes,
one faces a problem. To see this, let us have a look at the representation in the top pictures of Fig. 3. In the left picture we
can see the lake at rest situation in a front element, and in the right one we see its numerical representation for a linear
variation of the water and bottom heights. Clearly, a non-physical slope in the water free surface is introduced by the
linear numerical representation. This leads to artificial velocities in the downward direction, so that eventually the lake
at rest state is not preserved numerically.

4. Undefined velocities. Even if conserved quantities are well defined, for (nearly) dry nodes, the velocity~u is not, that is, the
quotient u ¼ Hu=H is not necessarily bounded.

We illustrate hereafter the way in which these issues have been handled.

4.3.1. Dry nodes detection
In cells with very low water heights, the element residual /T (or UT ) should be small, and so should be the split residuals.

In practice, we have to deal with undefined velocity vectors. This is in part due to the limited machine precision, and can lead
to unphysical values of the residuals. The solution adopted here is quite common in shallow water simulations [32,10,47]
and consists in introducing a cut-off value of the water height, say C~u � h, below which we set the velocity to zero, that is:
~u ¼
H~u
H if H P C~u
0 if H < C~u

(
:

Note that we do not introduce any cut-off value on the water height itself. The positivity of H is dealt with differently as we shall
see shortly. Note that the choice of C~u is not necessarily trivial. For some test problems, we will analyze its influence on the
numerical output. What we found out is that, probably due to the very small discharge in vicinity of the wetting/drying front,
the value of this constant affects little the numerical solution. A possible criterion to choose C~u is given in Section 5.
Lake at rest in front cells with adverse slope. Top left: real situation. Top-right: artificial gradient of total water height due to linear approximation.
: recovery of constant total water height through redefinition of the bottom height.



M. Ricchiuto, A. Bollermann / Journal of Computational Physics 228 (2009) 1071–1115 1089
4.3.2. Water height positivity: nonlinear schemes in front cells
In Section 4.2 we have shown that, under a time step constraint, the LLF scheme can preserve the positivity of the water

height. However, this is only true if the limiting is performed directly on the water height equation. The eigenvector projec-
tion described in Section 3.3.3, while improving the convergence of the overall algorithm [4], a priori does not guarantee the
preservation of the positivity of H.

To enforce positivity, we proceed as follows. Let us consider for example the time dependent case. We start by noting that,
when projecting back to conservative variables (cf. Eq. (51)), we get for the water height residual sent to node i:
U	1;i ¼ u	1;ir1;1 þu	2;ir2;1 þu	3;ir3;1:
Using the expression of the eigenvectors given in the Appendix A.1, the fact that the projection is performed using the eigen-
vectors in the velocity direction ~n ¼ ~u=k~uk, and that u	r;i ¼ b	r;iuT

r with b	r;i 6 1, we get
U	1;i ¼ u	2;i þu	3;i 6 juT
2j þ juT

3j:
When we make explicit use of the expression of the left eigenvectors (cf. Appendix A.1) in the velocity direction, we can fur-
ther bound the previous expression using the components of the element residual in conservative variables. In particular,
one easily shows that
U	1;i 6
1
2
ðj1� Frj þ 1þ FrÞjUT

1j þ
1
a
ðjUT

2j þ jUT
3jÞ ¼ Ulim;
where Fr denotes the Froude number introduced in Section 2.2, evaluated using local mean values of the unknowns. The last
inequality is valid for all the nodes of the element. Based on the explicit update (61), and on (22), we define the following
local worst guess for the value of the minimal water height at the new pseudo-time iteration:
Hlim ¼ Hmin �
3Ds
jTj Ulim;
with
Hmin ¼min
j2T
ðminðHn

j ;H
nþ1;p
j ÞÞ: ð83Þ
We finally modify the limiting procedure by setting in equation (50)
uT
r ¼

lrUT if Hlim P 0
ðUTÞr if Hlim < 0

(
;

and similarly for the split residuals. In addition to this, we smoothly switch off the stabilization in front cells, so that in these
elements we recover the positivity preserving limited scheme. This is controlled by the definition of �ðuhÞ given in
Section 5.

4.3.3. Bed slope in front elements
To solve the problem illustrated in Fig. 3, we follow [16]. The observation is that for the lake at rest state we have
Htot;j ¼ H0; 8j 2 T )rHh ¼ �rBh: ð84Þ
In cells with adverse slope this is not the case anymore. For example, in the situation of Fig. 3 we have
B1 > H0 ¼ Htot;2 ¼ Htot;3. This leads to different gradientsrHh and �rBh, so that /T –0, and spurious velocities are generated.
As in [16], the problem is cured by using, in front cells with adverse slope, a modified value of the bathymetry in the dry
nodes. In particular, in the computation of the spatial residual, for all nodes j with Hj ¼ 0 we replace Bj by Hmax,
with
Hmax ¼max
j2T
Hj>0

ðHj þ BjÞ: ð85Þ
This approach cures the problem in the lake at rest case, for which we obtain again /T ¼ 0 (cf. Fig. 3).
Note that the nodes in which we redefine the bathymetry all verify H ¼ 0 and~u ¼ 0. Hence, in front cells which are not at

rest, this modification does not alter the total mass of water contained in the cell, and does not alter the mass flux, at least
not directly. However, this procedure does alter the bed slope seen by the flow in these cells, leading to a reduction of the
slope. We have tried to correct this flaw by pre-multiplying the term rHtot by a factor of the type
Bmax � Hmin

Hmax � Hmin

����
����;
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with Bmax the max value of the bed height in the cell, and Hmin the minimum of the total water height over the cell. We have
observed no influence of this further modification in our calculations. The results presented later are obtained without this
correction. This issue deserves further attention and will be further studied in the future.

5. Implementation details

Before discussing the numerical tests, we give some details on the practical implementation of the schemes. Important
points are the computation of the physical variables from the conserved ones, the computation of the residual, and the def-
inition of �h and sh in the stabilization term. A summary is given hereafter.

Physical variables. We recompute the vector of physical variables ½H uv � after each iteration (21) (or (61) in the unsteady
case). When doing this, we apply the velocity cut-off described in Section 4.3.1. This allows to have always at each iter-
ation current nodal values of the conserved and of the physical variables. Concerning the definition of the cut-off value C~u,
we tried different solutions. The important issue is to make sure that this value is sufficiently small compared to the mesh
size. We found out experimentally that a good definition of this constant is
C~u ¼
h

Lref

� �2

; ð86Þ
where Lref is a reference geometrical dimension of the spatial domain computed as
Lref ¼ max
i;j2T h

k~xi �~xjk1:

Residual evaluation. As already seen in Section 4.1, we compute the spatial residual as in (64). The contour integral is
evaluated with a 2 points Gaussian formula on each edge of T. In doing this, we use a linear variation of the conserved
variables uh, and interpolate the nodal velocities (recomputed after each update) to obtain the ~uh � n̂ terms in each Gauss
point.
Stabilization term. The role of the parameter sh in the stabilization terms is to provide the correct scaling w.r.t. mesh size
and wave speeds. Ultimately, sh must guarantee that the additional term has the ‘‘dimensions” of the cell-residual. It is
easily seen that this is achieved through a definition guaranteeing that sh ¼ OðhÞ �Oðk~uk�1Þ. After a review of the liter-
ature on SUPG and Least-Squares stabilized Galerkin schemes, we decided to test the following two formulations (cf.
equation (38) and see [12,51,34] and references therein)

s1 ¼ jTj
X
j2T

jKjj
 !�1

¼ jTj
2

N; ð87Þ

and (see Eq. (11) for the notation)
s2 ¼
2h

2k~uk þ a
; ð88Þ
where all quantities are evaluated using mean values of the variables. Neither of these definitions are optimal. The study
of better formulations is under way, in the spirit of [29,30,39].The smoothness monitor �h should instead guarantee that
the extra terms are active mainly in smooth parts of the solution. Here we follow [2], and use a definition based on the
entropy residual which we locally approximate as
uE ¼ �vtUT ;
where v is an average over the element of the vector of entropy variables (6). Following the definitions given in [2], we
use as a smoothness sensor the quantity
�h ¼ min 1;
Ek~ukT

L1 jTj
Lref juEj

 !
e�

h
Lref

Href
Hmin : ð89Þ
In the last expression we make use of the following local quantities: E which is an elementwise reference value of the
energy (5), computed using local averages of the variables; k~ukT

L1 which is the largest component of the local averaged
speed; Hmin given by (83). We also use the global values of Lref , the reference length introduced in (86), and Href taken
as the maximum value of H in the initial solution.The exponential factor is added to take into account the occurrence
of dry areas. Please note that this factor is always of order one, except for small values of Hmin in correspondence of which
it quickly tends toward zero. In the time dependent case we use of the same formulas, except that uE ¼ vtUT=Dt, and
h ¼ ðjTjDtÞ1=3 in (88).
Explicit pseudo-time stepping. All the results presented are obtained by solving the nonlinear algebraic equations by
means of an explicit pseudo-time stepping procedure. In particular, in the steady case we perform our iterations as
unþ1
i ¼ un

i �
Dti

jSij
X
T2Di

/iðun
hÞ;
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where Dti is the local time step respecting (74) with m ¼ 0:7. We consider the solution as being converged when the norm
of the water height residual drops to a sufficiently low value, that is

kRnkL1

kR0kL1

< m with ðRnÞi ¼
X
T2Di

ð/iðun
hÞÞH:

In steady computations we normally take m ¼ 10�8 � 10�10.Similarly, in time dependent computations the solution is up-
dated as (cf. Section 3.4.1)

unþ1;pþ1
i ¼ unþ1;p

i � Dsi

jSij
X
T2Di

Uiðup
hÞ;

where while the (physical) time step is computed always according to (81), the local pseudo-time step Dsi is computed for
each node from (82). In all computations we have set m ¼ 0:7. The solution at time tnþ1 is assumed to be converged when

kRpkL1

kR0kL1

< m with ðRpÞi ¼
X
T2Di

ðUiðup
hÞÞH:

In the time dependent case, we normally take m ¼ 10�3 � 10�4.

6. Numerical results

This section presents an extensive evaluation of the discretization proposed. Our objectives are first to show that the sim-
pler LLFs scheme yields results comparable to the ones obtained with the LNs scheme, and then to evaluate its behavior on
test-cases involving the formation and movement of wetting/drying fronts.

6.1. Hydraulic jump over a wedge

To verify the monotonicity of the schemes proposed, as well as to estimate the influence of different definitions of the
stabilization matrix, we consider the approximation of a hydraulic jump over a wedge [31,41]. A sketch of the initial solution
as a close-up view of the mesh are given in Fig. 4. The incoming flow is super-critical with Fr¼ 2:74, the wedge angle is 8:95
,
and Bðx; yÞ ¼ 0 everywhere. The mesh size is h 
 1=20.

In Fig. 5 we report the iterative convergence histories of all the nonlinear discretizations. The basic limited schemes pres-
ent an erratic convergence, the residual not reaching machine zero. The stabilized ones show instead a (quasi-)monotonic
convergence to machine accuracy. As it could be expected, the convergence of the LNs schemes is faster, due to their upwind
character. We remark however that for the LLFs schemes the computation of the residual is much cheaper, the number of
matrix operations being considerably reduced. This is especially true when using the stabilization parameter (88). Concern-
ing the differences between the two definitions of the stabilization parameters, for the LNs scheme the cheaper choice s ¼ s2

leads to a slightly increased number of iterations. The inverse is observed for the LLFs scheme.
To visualize the resolution of the hydraulic jump, we report in Figs. 6 and 7 a 3D view of the water height (flow direction

right-to-left in the figures). The pictures show a sharp capturing of the discontinuity, spread over 2–3 cells. No oscillations
are present, also in the case of the stabilized schemes, and whatever the definition of the stabilization parameter. In the case of the
LLFs schemes the stabilization even improves the resolution of the shock which is sharper. The transition to the post-shock
state is also smoother. These observations are confirmed by the plots in Figs. 8 and 9, where we report the distribution of H at
the outlet boundary (x ¼ 4), and along the line y ¼ 1, respectively.
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Fig. 4. Hydraulic jump. Problem description and mesh.
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formed in [41] with the LNs scheme, hence here we focus on the LLFs scheme. Our objective is to show the effect of the sta-
bilization when approximating smooth solutions.

We compute the solution on a series of 4 unstructured irregular triangulations, similar to the one in Fig. 4. To have the
same local irregularity of the grid in every computation, the meshes are generated independently. Weak boundary condi-
tions are used everywhere.

We start by comparing the contours of the total water height Htot obtained with the LLF and LLFs schemes. We discuss the
results obtained with the simplified (and more interesting) formulation s ¼ s2 (Eq. (88)). The results obtained with the more
expensive stabilization parameter of equation (87) are nearly identical. The results obtained on the finest mesh are reported
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in Fig. 10. The contour plots on the left and in the middle pictures clearly show the beneficial effect of the stabilization in
‘‘killing” the spurious modes present in the LLF solution. This is also visible from the picture on the right in the same figure
showing the data along the diagonal (line y ¼ x; y P 0). The high frequency oscillations of the LLF scheme are clearly visible
in the line plot.

Lastly, in Fig. 11, we report on the left the typical iterative convergence histories obtained with the LLFs scheme, and on
the right the grid convergence plot, showing that indeed we achieve second order of accuracy. This is in line with the results
obtained with the LNs scheme in [41].

6.3. Pseudo-1D transonic flow over smooth bed

We consider now a 1D flow in a channel with the following variation of the bottom [46,26,21]
Fig. 11
s ¼ s2
Bðx; yÞ ¼ BðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 6 x 6 12
0 otherwise

(
: ð90Þ
Different steady solutions can be computed depending on the choice of boundary conditions. We evaluate the influence of
the stabilization on the trans-critical case.
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Fig. 12. Pseudo-1D transonic flow: iterative convergence. Left: LN and LNs schemes. Right: LLF and LLFs schemes.
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The SWE are solved on the spatial domain ½0;20� � ½0;0:5� on an irregular unstructured mesh similar to the one of Fig. 4.
The reference mesh size is h ¼ 1=10. Periodic boundary conditions are applied along the y-direction. Weak boundary condi-
tions are used at the left and right boundaries, imposing on the left Hu ¼ 0:18 and zero v velocity, and on the right the water
height H ¼ 0:33.

The convergence histories are reported in Fig. 12. The LN and LLF schemes present a very irregular iterative convergence,
with a stall after a decrease of one or two orders of magnitude in the water height residual. The stall takes place earlier for
the LLF scheme. Conversely, all the stabilized schemes converge (eventually to machine accuracy). Due to the nature of the
problem, the convergence is non-monotone, though smooth. As for the hydraulic jump computation, the LNs schemes con-
verge a bit faster. However, in this case the difference is less pronounced. The two definitions of the stabilization parameter s
give nearly identical results, and convergence histories.

In Fig. 13 we show the distribution of the total water height Htot along the line y ¼ 0:25. We compare the basic nonlinear
schemes with the stabilized ones obtained with s ¼ s2. In the case of the LN and LNs schemes, the results are almost iden-
tical. No oscillations are present. Differences are instead visible between the LLF and LLFs schemes solutions. In particular,
weak spurious oscillations are visible in the LLF solution. This is not a shock capturing problem: it is related to the presence
of mild spurious modes, as illustrated on the previous test case. This is confirmed by the absence of these oscillations in the
solution of the LLFs scheme, which is clearly monotone.

Last, we look at the errors in the discharge along the x-direction, which should be constant. In Figs. 14 and 15, we report
the error distributions on the lower boundary of the computational domain (where periodic boundary conditions are im-
posed), and in the middle of the domain (y ¼ 0:25), for the limited schemes (pictures on the left), and for the limited and
stabilized schemes (pictures on the right). All the plots show an error peak in correspondence of the shock. This is related
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Fig. 13. Pseudo-1D transonic flow: total water height, plot of the data along the line y ¼ 0:25. Left: LN and LNs scheme (s ¼ s2). Right: LLF and LLFs scheme
(s ¼ s2).
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to the fact that across the discontinuity the direction of the velocity vector is not well-defined, locally giving place to large
errors in its components. Outside the shock, the errors are always below 5%, which is not bad considering that the problem
has been solved using a 2D irregular mesh instead of a 1D one. What is impressive is the error reduction brought by the sta-
bilization. The errors are reduced roughly by half for the LNs schemes, and to about one fourth for the LLFs scheme. For
the latter, in particular, errors are present in a narrower region close to the shock, their absolute value being even smaller
than in the case of the LNs scheme.

6.4. Circular dam break

We simulate the break of a circular dam separating two basins with water levels H ¼ 10 and H ¼ 0:5. The radius of the
initial discontinuity is r ¼ 60. A sketch of the initial solution is given in Fig. 16. We model only one quarter of the dam, using
symmetry boundary conditions along the y ¼ 0 and x ¼ 0 axes. Our computational domain is hence the square ½0;100�2. The
unstructured triangulation used for the simulations is shown in Fig. 16. The reference grid size is h ¼ 2. We have run the
simulations up to time t ¼ 3, and compared the LN, LNs, LLF and LLFs schemes (cf. Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4) with
different definitions of the stabilization parameter s.

We report a 3D visualization of the water height obtained with the nonlinear stabilized schemes in Figs. 17 and 19. We
can see that the outward moving bore is computed without any spurious oscillations.

In a second set of pictures, we visualize the capabilities of the stabilization terms of dissipating the spurious high fre-
quency modes. In our experience, the velocities are the variables more heavily affected by these modes. For this reason,



Fig. 17. Circular dam break. 3D plot of the water height. Left: LNs scheme with stabilization parameter s1 (equation (87)). Right: LNs scheme with
stabilization parameter s2 (Eq. (88)).
we evaluate the effect of the stabilization by visualizing in Figs. 18 and 20 the contour plots of the norm of the velocity
vector.

The spurious modes in the LN scheme solution are visible in the left picture in Fig. 18. The stabilization term helps some-
what in removing these modes when s ¼ s1, as visible in the picture in the center on the same figure. To our surprise, the
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choice s ¼ s2 (rightmost picture in the same figure) did not bring any particular improvement. Concerning the LLFs schemes,
the beneficial effects of the stabilization are clearly visible in Fig. 20. Both the LLFs discretizations yield nice smooth circular
contours of k~uk.

As the previous tests have shown, the LNs and LLFs scheme yield very similar results. As a consequence, in the following
test-cases, most of which involve dry areas, we will focus on the LLFs scheme. Moreover, since the two definitions of the sta-
bilization parameter have so far given very similar results, we will make use of the simpler and cheaper definition of the
stabilization parameter s ¼ s2 (Eq. (88)).

6.5. Digression on CPU times and cost

Before testing further our the schemes, we discuss the issue of cost. It seems evident that the LLFs schemes are less costly
than the LNs schemes due to the reduced number of matrix operations. However, the LNs schemes do yield a faster conver-
gence in terms of number of nonlinear explicit iterations.

Here we compare the CPU times needed to obtain a solution with the different schemes on three tests: the hydraulic jump
over a wedge, the pseudo one-dimensional transonic flow, and the circular dam break. We have run all the computations on
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a dedicated machine (an Intel(R) Xeon(R) CPU 5160 3.00 GHz processor), and measured the CPU times needed to obtain the
final solution.

We present the results in Table 1 for the hydraulic jump problem, in Table 2 for the transonic flow, and in Table 3 for the
dam break problem. In the first two tables we report, for all the schemes, the number of iterations needed to achieve the
steady state solution for different cut-off values of the residual norm
eH ¼ log
kRHkL1

kR0
HkL1

;

having denoted by RH the array of the water height residuals, and by R0
H the array of the water height residuals at the first

iteration. Note that the same quantity is used in all the iterative convergence plots reported earlier. In all the tables, we nor-
malize the computational times with respect to the CPU time of the LLFs scheme with s ¼ s2 (cf. Eq. (88)), which is supposed
to be the cheapest of all the schemes. In particular, in the tables we denote by T	 the normalized times, and by T the actual
(dimensional) CPU time. In conclusion, when larger than unity, T	 tells us how many times a given scheme is slower than the
LLFs scheme with s ¼ s2. The same notation is used in Table 3. However, since the results refer in this case to a time depen-
dent problem, we only report the normalized CPU times, and the total number of (physical) time iterations.

A quick look at the tables immediately reveals that the LLFs scheme with s ¼ s2 is indeed the fastest of all the schemes. In
average, the LNs scheme require about 1.4 more CPU time to get the solution in the steady case, and about 1.65 more time in
te time dependent case. An exception is obtained at the finest level of convergence of the hydraulic jump, where the super-
critical nature of the flow favours the LNs schemes which have a more marked upwind character. The LLFs scheme itself is
about twice as slow when using s ¼ s1.

In particular, concerning the steady state computations, a quick calculation shows that, in comparison with the LLFs
scheme with s ¼ s2, one iteration of the LLFs scheme with s ¼ s1 is about 1.97 times slower for the hydraulic jump, and
about 1.85 times slower for the pseudo one-dimensional test case. This considerable difference is mainly due to the need
of assembling and inverting the absolute value Jacobians needed to evaluate (87). Similarly, one iteration with the LNs
scheme with s ¼ s2 is about 2.13 times and 2 times slower for the hydraulic jump and the pseudo one-dimensional problem
respectively. Lastly, one iteration of the LNs scheme with s ¼ s1 is roughly 2.2 and 2.1 times slower for the steady problems
considered.

Note that, if the explicit solver were replaced by Newton iterations, these figures might become even more favourable for
the LLFs scheme with s ¼ s2, due to the little matrix algebra needed for the assembly of the residual Jacobian needed for the
Newton loop. However, this has to be verified yet.

Concerning the time dependent circular dam break, the figures reported in Table 3 favour even more the LLFs scheme
with s ¼ s2. In particular, the same scheme with s ¼ s1 gives the most expensive discretization, one (physical) time itera-
tion being roughly 1.72 times slower. Lastly, one time iteration with one of the two LNs schemes is roughly 1.6 times slower.

6.6. Travelling vortex: grid convergence

We evaluate the accuracy of the LLFs scheme in time dependent computations on the travelling vortex test case described
in Section 2.3. The parameters used in the computations are: C ¼ 15, x ¼ 4p, ~u1 ¼ ð6;0Þ, and g ¼ 1. The problem is solved
on the domain ½0;1�2 with ðxc; ycÞ ¼ ð0:5;0:5Þ. In order to follow the movement of the vortex, we apply periodic boundary
conditions on the left and right ends of the domain. Weak far field conditions are set on the top and bottom boundaries.
We compute the solution up to time t ¼ 1=6 when the vortex is back in its initial position.

We start by visualizing the effect of the stabilization in Fig. 21. In the pictures we report, on an unstructured mesh with
the same topology of the one in Fig. 16 and h ¼ 1=80, the contours of the exact solution (left picture), of the solution obtained
with the LLFs scheme with s ¼ s2 (picture in the center), and with the LLF scheme (rightmost picture). It is evident that the
stabilization is successful in removing the spurious modes present in the LLF solution. In the left picture in Fig. 22, we com-
pare the data extracted on the line y ¼ 0:5 for the exact solution, and for the LLFs and LLF numerical solutions. The improve-
ment in accuracy brought by the stabilization is quite impressive.

Finally, we report a grid convergence study for the LLFs scheme (with s ¼ s2), in the right picture in Fig. 22. The results
show that we achieve the expected second order of accuracy.

6.7. Lake at rest tests for the LLFs scheme

To assess the well-balancedness of the LLFs scheme, we consider here two tests involving a smooth variation of the
bathymetry. On the domain ½0;2� � ½0;1�, we consider the following shape of the bed [41,46]:
Bðx; yÞ ¼ 0:8e�5ðx�0:9Þ2�50ðy�0:5Þ2 :
We discretize the spatial domain with an unstructured triangulation with the same topology of the one in Fig. 16, and with
h ¼ 1=100. As a first test, we impose as initial solution the lake at rest state ½Htot ;u;v� ¼ ½1;0;0�, and let the time dependent
version of the LLFs scheme (with s ¼ s2, and cf. Sections 3.2 and 3.3) evolve the solution until t ¼ 0:5. We then compute the



0                0.2              0.4               0.6               0.8                1
5

6

7

8

9

10

-2.3       -2.2        -2.1        -2           -1.9       -1.8        -1.7      -1.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Fig. 22. Vortex advection. Left: solutions along the line y ¼ 0:5. Right: grid convergence for the LLFs scheme with s ¼ s2.
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Fig. 21. Vortex advection. Contour plots of the solution after one period. Left: exact/initial solution. Center: LLFs scheme with s ¼ s2. Right: LLF scheme.

Table 4
Lake at rest solution: errors at time t ¼ 0:5, LLFs scheme with s ¼ s2.

L1 L1 L2

eHtot 8.955510e�17 2.605999e-17 3.183067e�17
eu 1.567940e�18 2.485329e�19 3.201703e�19
ev 1.432740e�18 1.789517e�19 2.327169e�19
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norm of the errors eHtot ¼ kHtot � 1k, eu ¼ kuk, and ev ¼ kvk. These errors are reported on Table 4, for a computation run in
double precision. We preserve the initial solution, down to the machine zero. A similar result was shown in [41] for the
LN scheme.

Next, we perturb the initial steady state by setting
2 The
Htot ¼
1:01 if 0:05 < x < 0:15
1 otherwise

�
:

We compute the solution with the LLFs scheme until time t ¼ 0:48, using g ¼ 9:8182 for the gravity acceleration. We report
snapshots of the solutions obtained at times t ¼ 0:12, t ¼ 0:24, t ¼ 0:36, and t ¼ 0:48 in Figs. 23–26, respectively. In the fig-
ures, on the left we plot 30 contours of the water height (from 0.92 to 1.011 in all the pictures), while on the right we report
the data extracted along the line y ¼ 0:5.2
bed height has been rescaled for plotting purposes.
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Our results compare very favorably with the ones reported in [41,46,54,55]. In particular, while being clearly well-bal-
anced and preserving the lake at rest state before the perturbation, the stabilized LLFs scheme yields a nice reproduction
of the interaction of the incoming wave with the non-flat bottom.

6.8. Pseudo-1D dam break on dry bed

We consider now a one-dimensional dam break on dry bed [46]. The test involves the break of a dam separating a basin
containing 10 meters of water from a dry region. The bed slope is zero everywhere. We solved the problem on the two
dimensional domain ½0;2000� � ½0;50�, imposing periodic boundary conditions in the y-direction. The triangular mesh used
is similar to the one in Fig. 4. We computed the solution up to time t ¼ 40 with the LLFs scheme with s ¼ s2.
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We report in Fig. 27 a three dimensional visualization of the solution obtained with the LLFs scheme setting the cut-off
constant to C~u ¼ 10�12 (cf. Section 4.3.1). One-dimensional plots of the data extracted in the middle of the domain (line
y ¼ 25) are instead shown in Fig. 28. In the pictures, the influence of the choice of the cut-off constant C~u is also shown.
The results are practically independent on the value of this parameter. Differences in the distribution of the discharge Hu
            3 0 0            6 0 0           9 0 0          1 2 0 0          1 5 0 0         1 8 0 0            3 0 0            6 0 0           9 0 0          1 2 0 0          1 5 0 0         1 8 0





0               20               40              60              80              100 0               20               40              60              80              100

0

2

4

6

8

10

0

5

10

15

20

25

30

Fig. 31. Circular dam break over dry bed. LLFs scheme, and s ¼ s2. Influence of the cut-off C~u . Data extracted from the line y ¼ x. Left: water height. Right:
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6.10. Pseudo-1D draining over smooth bed

This is another classical test [46,26]. It involves the computation of the drying of a one-dimensional channel of length 25.
The variation of the bed height is given by (90). At time t ¼ 0, one has Htot ¼ 0:5 everywhere, with ~u ¼ 0. As time advances,
one observes the water flowing out of the domain, until most of it is dry, with the exception of the region ahead of the hump
in bed height.

We have solved this problem on the two dimensional domain ½0;25� � ½0;0:5�, with periodic boundary conditions in the y
direction. The mesh is an unstructured triangulation similar to the ones used for the other tests. The reference mesh size is
h ¼ 1=200. We show the results obtained with the LLFs scheme, with s ¼ s2, and C~u as in (86). Weak characteristic boundary
conditions are used on the left and on the right ends of the domain using the initial solution as reference state on the left, and
the dry state ½H;u;v � ¼ ½0;0;0� on the right.

We report in Figs. 32 and 33 a three dimensional visualization of the evolution in time of the water height. Line plots of
the data extracted along the lines y ¼ 0 and y ¼ 0:25 are reported in Fig. 34. In the last figure, the solid lines represent the
solution at y ¼ 0, while the symbols represent the data at y ¼ 0:25. Despite of the fact that we solved the problem on a two
dimensional unstructured mesh, our results are in excellent agreement with the ones presented in published literature
[46,26].

6.11. Pseudo-1D wetting/drying on sloping shore

This test is taken from [37] (see also [49,36]). It involves the interaction of a solitary wave with a sloping shore. A sketch of
the initial solution is reported in Fig. 35. The initial solution is a wave described by the analytical profile
H0ðxÞ ¼maxð0; FH � BÞ, and ~u0 ¼ ðu0ðxÞ;0Þ, with.
FH ¼ Dþ dHsech2ðcðx� x1ÞÞ; u0ðxÞ ¼
ffiffiffiffi
g
D

r
H0ðxÞ;
and, as in [37], we set D ¼ 1, dH ¼ 0:019, and
Fig. 35. Pseudo-1D wetting/drying on sloping shore. Sketch of the initial solution.
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Fig. 36. Pseudo-1D wetting/drying on sloping shore: time t ¼ 9. Left : 3D view of the solution. Right: line plots of the data extracted at y ¼ 0 and y ¼ 1.
Solution obtained with the LLFs scheme.
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Fig. 37. Pseudo-1D wetting/drying on sloping shore: time t ¼ 17. Left : 3D view of the solution. Right: line plots of the data extracted at y ¼ 0 and y ¼ 1.
Solution obtained with the LLFs scheme.
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c ¼
ffiffiffiffiffiffiffiffi
3dH

4D

r
; x1 ¼

ffiffiffiffiffiffiffiffi
4D
3dH

s
arcosh

ffiffiffiffiffiffiffiffiffiffi
1

0:05

r !
:

The simulations have been run on the domain ½0;80� � ½0;2� with the LLFs scheme, and using an unstructured triangulation
similar to the one in Fig. 16, and with h ¼ 0:4. Periodic boundary conditions have been used in the y-direction, and a weak far
field condition has been imposed on the left boundary. In Figs. 36–41 we present the results in terms of a three dimensional
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Fig. 38. Pseudo-1D wetting/drying on sloping shore: time t ¼ 23. Left : 3D view of the solution. Right: line plots of the data extracted at y ¼ 0 and y ¼ 1.
Solution obtained with the LLFs scheme.
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Fig. 39. Pseudo-1D wetting/drying on sloping shore: time t ¼ 28. Left : 3D view of the solution. Right: line plots of the data extracted at y ¼ 0 and y ¼ 1.
Solution obtained with the LLFs scheme.
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view of the water height profile at different times, and of its one-dimensional distribution on the periodic boundary, and at
y ¼ 1.

Our results are in very good agreement with the ones presented in [37]. The wetting/drying process is well reproduced, as
shown clearly by the one-dimensional plots. At time t ¼ 75 the solution has almost reached a stationary state, as confirmed
by the fact that we have
duH

dt












L1ðXÞ
< 10�6; where

duH

dt

� �
i

¼ Hnþ1
i � Hn

i

Dt
:

6.12. Thacker’s periodic solutions

We report here the results obtained for the periodic oscillations of Thacker, described in Section 2.3. We have run the
simulations for several oscillation periods on the domain ½�2;2�2, using an unstructured grid with the same topology as
the one of Fig. 16, and mesh size h ¼ 1=25. As in the last test, we used the LLFs scheme with s ¼ s2, and C~u as in (86).
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Fig. 40. Pseudo-1D wetting/drying on sloping shore: time t ¼ 32:5. Left: 3D view of the solution. Right: line plots of the data extracted at y ¼ 0 and y ¼ 1.
Solution obtained with the LLFs scheme.
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Fig. 43. Thacker’s periodic planar solution. Left: time t ¼ 2T þ T=2þ T=3. Right: time t ¼ 3T . Solutions obtained with the LLFs scheme.
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Fig. 45. Thacker’s periodic curved solution. Left: time t ¼ 2T þ T=2þ T=3. Right: time t ¼ 3T. Solutions obtained with the LLFs scheme.
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Fig. 44. Thacker’s periodic curved solution. Left: time t ¼ 2T þ T=3. Right: time t ¼ 2T þ T=2. Solutions obtained with the LLFs scheme.

M. Ricchiuto, A. Bollermann / Journal of Computational Physics 228 (2009) 1071–1115 1109



Fig. 46. Run-up on a circular island. 3D visualization of the total water height: lake at rest state.

Table 5
Lake at rest solution: errors at time t ¼ 5, LLFs scheme with s ¼ s2.

L1 L1 L2

eHtot 2.775558e�17 1.532978e�19 1.643908e�18
eu 2.221603e�18 7.987680e�21 5.578502e�20
ev 1.252903e�18 6.400735e�21 4.081257e�20
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For the planar solution we set (cf. Section 2.3) a ¼ 1, H0 ¼ 0:1, and g ¼ 0:5. This gives an oscillation period T 
 4:44. For
the curved oscillations we set instead a ¼ 1, H0 ¼ 0:1, and r0 ¼ 0:8, leading to a period T 
 2:22.

We report the results in Figs. 42 and 43, for the planar oscillations, and in Figs. 44 and 45, for the curved ones. For the
planar solution we plot the data extracted along the line y ¼ 0 for x > 0, while for the curved oscillations we show the data
sampled all along the line y ¼ 0.

The agreement with the exact solution is excellent. Note that the numerical result is still almost perfectly periodic after
three periods. The wetting/drying front is approximated without any spurious oscillations.

6.13. Wave run-up on a conical island

As a last test we consider the runup of a solitary wave over a conical island. We refer to [36,15,32] and references therein
for details concerning the bathymetry defining the island.
Fig. 47. Run-up on a circular island. 3D visualization of the total water height: front side and lateral runup, formation of symmetric waves.



Fig. 48. Run-up on a circular island. 3D visualization of the total water height: lateral runup, propagation of symmetric waves.

Fig. 49. Run-up on a circular island. 3D visualization of the total water height: symmetric waves joining on the rear side, and rear side runup.
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As in [36], the simulations have been run on the computational domain ½0;25� � ½0;30�. Following [32], we choose a coor-
dinate system with origin located at the right end of the wavemaker. The conical island is then centered at
ðxc; ycÞ ¼ ð12:96;13:80Þ. We impose far field characteristic boundary conditions on all the boundaries. The reference mesh
size of the unstructured triangulation used for the simulations is h ¼ 0:25 All the computations have been run with the LLFs
scheme, s ¼ s2, and C~u given by (86).

Before presenting the simulation of the runup, as for the test of Section 6.6, we evaluate the well balancedness of the LLFs
scheme, by initializing the solution with the lake at rest state obtained by setting
½Htot; u;v � ¼ ½Bðx; yÞ þmaxð0;H0 � Bðx; yÞÞ; 0;0�;
with H0 ¼ 0:32 [36]. A visualization of the overall geometry, and of this initial solution is given in Fig. 46. We report in Table
5 the errors with respect to this stationary state obtained at time t ¼ 5 with the LLFs scheme. As in Section 6.6, we find that
the lake at rest is preserved down to machine zero, even in presence of dry areas.

Next we perturb the steady state by imposing a solitary wave defined by a hyperbolic secant. Details can be found in
[36,37,32]. In Figs. 47–49 a three dimensional visualization of the runup process is shown.

The following remarks can be made. All the results are quite clean. No oscillations are visible. The preservation of the lake
at rest state before the wave reaches the island can be clearly seen on the left in Fig. 47. The run up of the front side of the
island is visible on the right in the same figure. In Figs. 48 and 49, we can observe the formation of the two waves running
around the island and joining on its rear side. This eventually leads to the run-up on the rear side of the island, which is
clearly visible in Fig. 49. Very good agreement with the results of [36] can be observed.

At last, we visualize in Fig. 50 the time evolution of the free surface parameter
g ¼ HtotðtÞ � Htotðt ¼ 0Þ;
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Fig. 50. Run-up on a circular island. Time variation of the free surface g ¼ Htot � Htotðt ¼ 0Þ at wave gages 6, 9, 16, and 22 of benchmark problem of [32].
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in the gage points given in [32]. Due to the unstructured nature of the mesh, we do have a slight difference in the position of
these probes. In particular, the location of the gages for our computations is the following:
Gage3 : x ¼ 6:796; y ¼ 13:045
Gage6 : x ¼ 9:273; y ¼ 13:722
Gage9 : x ¼ 10:365; y ¼ 13:789
Gage16 : x ¼ 12:930; y ¼ 11:213
Gage22 : x ¼ 15:560; y ¼ 13:800;
which are very close to the ones used in the reference. The time evolution of g obtained here agrees very well with the results
reported in [32], especially for the first three gages, which are located on the front of the conical island. The results of the last
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two probes, located on the rear of the island, are still quite close to those of the reference. However a phase shift is present
which might be explained by the fact that we neglected the friction term in the discharge equations, which is instead con-
sidered in [32]. We judge these results very encouraging.

7. Conclusions

We have discussed an approach to discretize the shallow water equations on unstructured grids, including dry areas. The
technique proposed is based on a stabilized nonlinear variant of a multidimensional Lax–Friedrichs scheme, obtained adapt-
ing the ideas of [2,40].

The schemes proposed are conservative, well balanced, and second order accurate. The numerical results clearly demon-
strate their capabilities in handling discontinuous flows and dry geometries without spurious oscillations. The preservation
of the positivity of the water height is guaranteed under a time step constraint, without the need of a cutoff on the water
height itself.

Our results are certainly comparable with the ones obtained with state of the art Finite Volume Godunov discretizations
for Shallow Water simulations (e.g. [46,32,9,36,26,25] and references therein). However, the residual approach at the basis of
our work allows is easily generalized to very high order of accuracy on unstructured grids, without losing any of its basic
properties such as compactness, non-oscillatory behavior, and positivity of the water height. How to do this for steady state
problems is discussed for example in [5].

There are however a number of important issues to be investigated and improved. From a practical point of view, it is
certainly necessary to replace the explicit iteration procedure with a Newton solver. From the point of view of efficiency,
however, in our view the most disappointing fact is to have an implicit highly nonlinear discretization, and still being subject
to a time step constraint in unsteady simulations. The existence of an upper bound for the size of the time step is a known
condition for the preservation of the positivity of the solution when integrating time dependent conservation laws [14].
However, we still think the fact that an implicit discretization needing a nonlinear iterative solution process should allow
the use of large time steps. Residual distribution schemes with this property have been proposed in the past [6,19], based
on a two-layer solution procedure. This might be a solution. Another possible route could be the use of a space–time frame-
work with a discontinuous representation in time. This will definitely be the subject of research in the near future.

An additional important point will be to find formulas for the stabilization matrix s allowing an optimal scaling of the
stabilization, without the need of performing any matrix inversion (as in (87)). Definition (88) is an attempt but it is far from
optimal. The work published in [29,30,39] gives possible guidelines to achieve this goal.

Lastly, concerning the wetting/drying process, we are sure that improvements are still possible. As in some published Fi-
nite Volume solvers (see e.g. [25] and references therein), we might for example exploit exact linearized solvers at the wet/
dry interface to devise a distribution strategy not only based on the positivity requirement, as we do now. Lastly, it would be
interesting to find an improved procedure allowing the preservation of steady lake at rest states in front cells at the same
time not perturbing the slope in cells with upward moving flow.
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Appendix A.

A.1. Jacobian eigenvectors

Given ~n ¼ ðnx; nyÞ 2 R2, with knk ¼ 1, the Jacobian Kð~n;uÞ (Eq. (15)) for the SWE is
Kð~n;uÞ ¼
0 nx ny

a2nx � u~u �~n unx þ~u �~n uny

a2ny � v~u �~n vnx vny þ~u �~n;

2
64

3
75
where ~u ¼ ðu;vÞ is the flow speed, and with the celerity a ¼
ffiffiffiffiffiffi
gH

p
. The eigenvalues of Kð~n;uÞ are obtained by (11), setting

knk ¼ 1. The corresponding right eigenvectors are given by
r1 ¼
0
�anx

any

2
64

3
75; r2 ¼

1
uþ anx

v þ any

2
64

3
75; r3 ¼

1
u� anx

v � any

2
64

3
75
The expression for the left eigenvectors is the following:
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l1 ¼
1
a

uny � vnx;�ny; nx

� �
l2 ¼

1
2a

a�~u �~n; nx; ny

h i
l3 ¼

1
2a

aþ~u �~n;�nx;�ny

h i
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