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1. Introduction

We consider the solution of the two dimensional shallow water equations (SWE) by means of conservative Residual
Distribution (RD) schemes on unstructured triangular meshes. The SWE model the dynamics of shallow free surface flows
under the action of gravity. The model used here does not include the effects of friction or other source terms beside the
ground elevation (bathymetry). It constitutes a non-homogeneous system of conservation laws for the water height and
its discharge. We will also consider the case of dry bed, where important properties of the system are lost, and one runs into
several numerical problems.

When solving the SWE, the discretization should respect a certain number of criteria. The schemes should keep the lake at
rest solution, i.e. there should be no spurious numerical waves in areas with zero velocity and constant total water height.
Schemes which keep the lake at rest solution are called well balanced. In presence of a dry/wet interface, the preservation of
the positivity of the water level becomes important. Similarly, spurious oscillations near discontinuities are an unwanted
effect. Hence, we need schemes that enjoy some kind of positivity preservation property, and that have a non-oscillatory
character.

To solve the system numerically, we combine the stabilized formulation of nonlinear limited Residual Distribution (R D)
schemes proposed in [2,40], with the conservative approach of [18,42], which has been already used in [41] to solve the SWE.
In the last reference, however, some issues are left open, or not addressed in detail.

The most important is the lack of iterative convergence encountered when using most nonlinear high order RD schemes.
This hampers grid convergence, leading to sub-optimal accuracy. This issue is analyzed in [2,40], where a cure is proposed.
The idea is to add, in smooth regions of the solution, a high order streamline dissipation term. Having a residual character,
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this term does not spoil the accuracy of the (already formally second order) underlying nonlinear scheme. It actually im-
proves it by improving the properties of the algebraic nonlinear equations. Ultimately, this guarantees the existence of a un-
ique solution, and restores iterative and grid convergence. For the steady SWE, preliminary results employing this technique
have been already shown in [41]. However, the schemes used in [41] have an upwind character. While somewhat improving
the convergence properties, upwinding requires heavily the use of the flux Jacobians. The resulting schemes are quite costly,
and one can run into trouble in vicinity of dry/wet interfaces.

In this paper we improve on the work of [41], by using nonlinear discretizations based on a simpler approach. This is
achieved by:

e using the stabilized formulation of [2,40]. This allows to build a more flexible discretization, and ultimately allows to
achieve the expected grid convergence whenever the solution is smooth;

e using a nonlinear discretization built upon a multidimensional Lax-Friedrichs scheme. The numerical results show that
the stabilized nonlinear Lax-Friedrichs scheme yields results as accurate as the ones obtained with the nonlinear variants
of the multidimensional upwind N scheme proposed in [41].

e adapting the nonlinear Lax-Friedrichs scheme to the computations of dry/wet interfaces. In this respect, we benefit from
the positivity properties of the underlying first order Lax-Friedrichs scheme. However, an ad hoc treatment of cells at the
wet/dry front is still needed to be able to fully profit of this property, and to guarantee the preservation of the steady lake
at rest state.

One of our major objectives is to show how to adapt the existing RD technology to obtain schemes tailored to shallow
water simulations, and yielding, on unstructured triangulations, results comparable to the ones given by state of the art finite
volume discretizations.

The exposition is organized as follows: In Section 2, we briefly recall the SWE, their properties, and some exact solutions.
In Section 3, we discuss the basics of conservative R D schemes, with a description of how we implemented the stabilization
procedure of [2,40] in the steady as well as in the time dependent case. The application to the SWE is then discussed in Sec-
tion 4. We recall and generalize some results presented in [41] concerning the well balancedness of our approach, and then
we analyze the preservation of the positivity of the water height for the Lax-Friedrichs based schemes. The steps undertaken
to handle the wetting/drying process are described in the same section. We devote Section 5 to the details of the implemen-
tation and choice of the parameters used in the simulations. The effectiveness of the approach proposed is demonstrated by
the very extensive numerical validation presented in Section 6. We end the paper with a summary and an outlook on the
issues still left open.

2. The shallow water system
2.1. Conservation law form

The shallow water equations (SWE) model the behavior of shallow free surface flows under the action of gravity. In con-
servation law form they can be written as:

ou

TV Fu)-S(uxy) =0 on Qr = Qx [0,t7] C R? x RY, 1)
with conserved variables, flux, and source term given by
H Hu Hv
u=|Hu| F=[F,F)=|H?+g¥, Huv S——gH| %2 (2)
Hv Huv Ho” +g¥% L)

where H denotes the relative water height, ii = (u, v) the flow speed, g the (constant) gravity acceleration, and B(x,y) the
local bathymetry or bed height. The source term models the effects on the flow of variations of the bed slope. We also intro-
duce the free surface level, or total water height H,, (see Fig. 1),

Htof(xvyvt) :H(X,y,t)+B(X7y) (3)
,/\QQ/_
Htot H
] Blz,y)
x

Fig. 1. Shallow water equations: main parameters.
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2.2. Symmetric quasi-linear form and total energy equation

Weak solutions of the shallow water system are characterized by the entropy inequality [28,50]

2
Z—f+v-(ﬁE)+V-<ﬁ‘%><0, (4)

where E is the total energy given by
1 i-u
E(u) :H(igH—kgB—s-T). (5)

The < sign in (4) becomes a strict inequality across discontinuities, and an equality on smooth classical solutions. The energy
E is convex in u, and acts for the system as a mathematical entropy, in the sense of Harten [27]. In particular, introducing the
vector of symmetrizing variables v given by [28]

i

V=T g pogn ©®)

the system can be written in the symmetric quasi-linear form [28]

—

ov ov ov
A0§+A15+A2@—S(v7x,y)_0, (7)
with the notation S(v,x,y) = S(u(v),x,y) and with symmetric Jacobians {Ak}iz0
 0u _OF, _0F,
A=, A= A =2 8)

The total energy equation is recovered multiplying on the left (7) by v* [28]

vaoaa—‘t’ +V'A; 2—: + VA, 2—; —V'S(v,x,y) =V <auai(tv) +V. -F(v)- S(v,x,y)) <0. 9)
Being symmetric, the matrix

K:=A1& + A, (10)
has real eigenvalues, and real linearly independent eigenvectors V¢ = (&, &,) € R%. The eigenvalues of K; are

=1-8 Ip3=1ald, (11)
with a = \/gH. The local Froude number defined by the ratio

Fr = @7 (12)

plays the same role as the Mach number in gas dynamics.
2.3. Exact solutions

To simplify the results section, we recall here a number of analytical solutions of the shallow water equations.
Lake at rest solution. This solution is easily obtained assuming u = v = 0 and integrating (1) and (2) over an arbitrary
control volume V obtaining

/%dxdy:—j{ Hii -fidl = 0,
v at oy

and similarly

/ o(Hu) dxdy = —/gHVHmdxdy.
v ot v

If Hioe(x,y,t = 0) = Ho, V(x,y) € @, from the arbitrariness of V, one gets the exact solution
[Htot(x1y7t)au(x7.y7 t)’V(X,}’:t)} = [H07070} V(X7y) EQ and t > 0 (13)

Note that this is independent on the shape of B(x,y), as long as VH,, is integrable.

A class of 2D potential solutions. In [41] the authors have presented a class of analytical solutions obtained by choosing
the velocity vector to be given by a potential y: (—v,u) = Vi. A simple steady state for the water height is obtained provided
that

oH OH 0oy oH oy oH

Ay =0 and ua-i-v@f@&—&@,o,
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A simple solution is H =y + o, with « constant. The discharge equation is then exactly satisfied if [41]:
ey B | R .
B - g (C 2 W O(',

where C is another constant. We can choose y as the real part of a function f, (x,y) = Re f(z), where f is holomorphic in
z = x +1y. The reader is referred to [41] and to the results section for an example.

Travelling vortex solutions. In the case B(x,y) = 0, another class of solutions can be obtained by setting ii = ii,, + ii', with
ii,, constant. If, in cylindrical coordinates (r,6), we set ii' = (u,, u;) = (0,u,(r)), then:

L 1oy 1 0uy(r)

V-i=V-i =0

r or r o0 ’
so that the water height equation becomes
oH _
I +1,-VH=0,
with solution H(x,y, t) = Ho(¢(x,y,t)) with ¢ = (x,y) — ti.t, and with Hp(x,y) the initial water height profile. For the velocity
we have instead

e s
a%wL (tlog - VU + (U’ - V)U' + gVHo(¢) = 0.

Clearly, one possible solution is @' (x,y, t) = @' (¢(x,y,t)), such that V¢ € R?
(W'(&) - V)U'(&) +gVHo(¢) = 0.

Ultimately, we have to choose the initial states of the water height and of the tangential velocity, such that the last equality is
verified. A travelling vortex is obtained if one sets (in cartesian coordinates, see also [23]):

)

i {F(l + cos(wre)) (Ve — ¥, X — Xc) if wro<n
L 0 otherwise

with I' the vortex intensity parameter, (x.,Y.) the coordinates of the vortex core, and r. the distance from the vortex core, and
w an angular wave frequency determining the width of the vortex. By integrating the velocity equation in the radial direc-
tion, we obtain for the water height:

V(L2 (h(wr,) - h(m))  if wre<T

HO(rC) = Hoo + g .
0 otherwise

with
. 1 X . 12 ,
h(x) = 2 cos(x) + 2xsin(x) + 3 cos(2x) + 2 sin(2x) + EX .

Other vortex shapes can be obtained by using different definitions of i’.
Thacker’s 2D periodic oscillations. In [52] two classes of exact solutions have been shown, corresponding to nonlinear
oscillations in a basin with paraboloid shape:

B(x,y) =B(r.) = —Hp (1 - Z—%),

with r. the distance from the center of the paraboloid, Hy the height of the center of the basin, and a, a parameter. Two un-
steady analytical solutions exist, for which H(x,y, t) = max(f(r,t) — B(r¢),0).
The first class of solutions describes the oscillations of a planar free surface level for which:

Foey.t) ="H0 (4 2x - xe) cos(ent) + 20 - o sin(eon)),

with w = /2gH,/a? the frequency, and 7 a parameter.
Another set of periodic solutions describes the curved oscillations of the free surface. In this case:

St S0 tr)

f(re,t) = Ho (1 1 Acos(ot) @ (1 — Acos(wt))?

with w = /8gH,/a? the frequency, and, given ro > 0, A is the shape parameter
a — 12
0

g2 2"
ac +ry
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3. Numerical discretization

We consider here the approximation of weak solutions of the two dimensional system of conservation laws

ou
—+V Fu) =0 on Qx[0,t] CR*xR, (14)
with u : Qr — R™ the vector of conserved quantities, and F = [F;, F;] : R™ — R™? the conservative fluxes. The system is
supposed to be hyperbolic, hence for any & = (&, &,) € R?, &0 the matrix

0Fi(u), N 0F>(u) 0F (u)
u ! ou ou

(15)

ot

K(Eu) = &=

admits a full set of real eigenvalues and linearly independent eigenvectors. When necessary to simplify the discussion, we
will also consider the scalar advection problem.

%w.w:o. (16)

Throughout the text we will make use of bold characters whenever we refer to vector quantities (unknowns, fluxes, etc.),
while in the scalar case we shall use small italic symbols.

We discretize the spatial domain 2 by means of an unstructured triangulation denoted by 77, the parameter h being a
reference grid spacing. In each triangle T € 7, we denote by i; the local inward normal to the edge facing node j, scaled by
the length of the edge (see Fig. 2). The local normals verify

> i =0 (17)

On 7, we will mainly make use of a continuous piecewise linear representation. For example, given the nodal values
u; = u(x;,y;) we set

Uy (X,Y,E) = > dilx y)ui(t (18)
€Ty

with

U05) = 0Vl =g W= (19)

jeT

where §; is Kronecker's delta. Often, this representation is also used for the flux F.

In time dependent simulations, we break the temporal domain [0, t;] in a series of discrete intervals {[t", PN with
t® = 0 and t" = t;. We denote by At the time step At = t"™1 —t".
3.1. Residual distribution in the steady case

When seeking steady state solutions of (14), the schemes we consider are based on the computation and splitting of the
local element residuals ¢' defined as

¢ (up) :yf Fr(uy) -fdl VT € T, (20)
oT

where 71 is the outward unit normal to 9T, and with F} a continuous discrete approximation of the flux. The nodal values of
the unknown are obtained by iterating until steady state the pseudo-time explicit update

! =u? fqu&, u), (21)

TeD;

o k

Fig. 2. Nodal normals (left), and median dual cell S; and nodal stencil D; (right).
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with D; the stencil of node i (Fig. 2), |S;| the area of the dual cell of the node i obtained as
T
5= 22)
TeD;

and where the local nodal residuals or split residuals ¢jT satisfy the “conservation equation”

S of ) =¢" (W), VTeTh (23)

jeT

Equivalently, denoting by g; the distribution matrix of local node j, such that

o] = B¢’ (24)
we must have

d_b=1d, (25)

jeT

Id being the m x m identity matrix. Note that the pseudo-time marching iterations (21) are ultimately a means of obtaining the
approximate solution verifying

> ¢i(w) =0. (26)

TeD;

3.2. Residual distribution for time dependent problems

For time dependent computations, schemes like (21) are, in general, not suitable. Consistent formulations are suggested
in [6,17,22,45]. Here, following [6,42], we compute a space-time residual defined as

tn+1 au
() / / (J n .7-'h>dxdydt 27)
th .
In particular, assuming a linear variation in time of the fluxes, we can write
o' (u,) — / (W —upydxdy + 2 (ié F -l +74 Fu. ﬁdl). (28)
JT 2 JoT oT
If we take u, linear in space, we finally have
T n n At n n
o = B S )+ S o) + 7)), (29)
jeT

In every slab Q x [t", t""!], given u} we compute the nodal values of u*! from the algebraic system
> ol () =0 VT eTh, (30)
TeD;

where the @s define some splitting of &' (uy), that is
Z(DT l.lh (DT l.lh) (31)
jeT

As in the steady case, when possible, we denote by g; the distribution matrix of local node j, such that

=po’, > p=Id (32)

jeT

3.3. Examples of linear first order positive schemes

3.3.1. The N scheme
When solving the steady limit of the scalar advection equation (16), one easily shows (with the notation of equation (17),

see also Fig. 2)

o' => kuy, k= —n.

JjeT

Ql

The N scheme reads

o = ki (U — ), (33)
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with u, = =N3>, rk; u;, being N = 1/Zjdkj+. The N scheme is a multidimensional upwind and positive scheme [20]. In par-
ticular, one can write

¢ ==Y KNk (w5 — ) =Y cj(ui — ), (34)
jer e
J# j#

with 65 = —k,-*Nkj’ > 0. When combined with a positivity preserving time integration scheme this leads to a discrete max-
imum principle for the numerical solution [20].
For hyperbolic systems, one can define a matrix N scheme [53] as follows:

o = K (u; —uyy), (35)
where the matrix K; is defined as
1 0F (u) o
Ki= 5 =5 T (36)

for some (arbitrary) locally linearized state u, and with K;" computed as usual via eigenvalue decomposition. Here, following
[18], the inflow state vector u;, is computed such that the scheme is always conservative:

u, =N (Z Ka; - ¢T>, (37)

JjeT

with the matrix N defined as

N= (Zl(f) : (38)

jeT
For linear symmetric systems, the N scheme is energy stable [3]. Concerning its positivity, a simple-wave analysis has been
proposed in [7] to justify the absence of spurious numerical oscillations when using the matrix N scheme.

For time dependent problems, as in [41,42], we use, in conjunction with splitting (35) of the spatial residual, the following
splitting of (28)

oY = il
3
As remarked in [41], this corresponds to the combination of the N scheme in space with second order trapezium rule inte-
gration in time. In the case of linear scalar advection, the solution obtained with this scheme verifies a discrete maximum
principle under a constraint on the size of the time step [6,20].
The matrix N scheme is at most first order accurate and yields non-oscillatory solutions in all practical applications.

W)+ 5 (M) + g ). .

3.3.2. The Lax-Friedrichs scheme
For steady scalar advection, the Lax-Friedrichs scheme is defined as

1 1
LF :§¢T+§a2(ui—uj). (40)
jeT
i#j

This scheme is a two dimensional generalization of the 1D Lax-Friedrichs one. We have

1 1
=g D kit gy (i) = cj - ),
jeT jeT jeT
ki jigi
with cf = (¢ —k;)/3 > 0, provided that & > maxjcr|k;| > 0. In this case, when combined with a positivity preserving time
integration scheme, the LF scheme leads to solutions enjoying a discrete maximum principle [20]. For hyperbolic systems,
the LF scheme reads

1 1
iLF:§¢T+§O‘§ (u; —w), (41)
JeT
A

where if p(-) denotes the spectral radius of a matrix, o is normally chosen as [2]

o > max p(K;). (42)
JjeT
As for the N scheme, in the time dependent case we define a LF splitting given by
T n n At n n
o = Tl S5 ) + ol ), 43)
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corresponding to the combination of the LF scheme in space with second order trapezium rule integration in time. In the case
of linear scalar advection, the solution obtained with this scheme verifies a discrete maximum principle under a constraint
on the size of the time step [20].

The LF scheme is at most first order. In the case of the SWE, we will show later that it preserves the positivity of the water
height.

3.3.3. Limited nonlinear schemes
Nonlinear schemes are needed to combine a non-oscillatory behavior of the discrete solution (and eventually positivity
preservation) and higher accuracy. In the RD framework, the accuracy of the discretization can be formally characterized by
means of a truncation error analysis initially proposed in [1]. We omit here the details of this analysis, for which we refer to
the above mentioned reference and to [8,20,41,44], and limit ourselves to mention the two results that are of interest here.
The first is that a truncation error of the type £ = Ch* will be obtained provided that the split residuals satisfy an estimate
of the type (in two space dimensions)

7|l < Ch> Vi and VT,
in the steady case, and
|®f|| <Ch* Vi and VT and V[t",t"],

in the time dependent case. In particular, these estimates are always verified by Petrov-Galerkin schemes in the form
o = / @IV - Fy(uy) dxdy,
T

and

[n+1
o = [ [of (G 7 Fim) ) deayet,
t" T

in the time dependent case, where the /s are a set of uniformly bounded test functions such that

> o =1d.

jeT
As a particular case, schemes that read
¢! = pl¢" (] = 7@’ in the time dependent case),

with uniformly bounded distribution matrices !, are formally second order accurate. Schemes that belong to this class are of-
ten said to be linearity preserving or LP.

In this study, we adopt the construction proposed in [7,6]. The idea is to start with a linear first order positivity preserving
scheme, and to devise a way to map its local residuals onto a set of nonlinear positivity and linearity preserving residuals. Note
that by positivity preserving scheme here we intend one that, for scalar advection and in the steady case, can be written as

¢f = cjui—u) with ¢; >0,
jeT
and similarly in the time dependent case (see [20] for more details). The reader is referred to [1,22,23,33] and references
therein for a review of other techniques.
In the scalar case, the limiting technique consists in mapping the distribution coefficients [3}’ of a positivity preserving
scheme onto nonlinear bounded distribution coefficients f;. The nonlinear mapping should verify the following
properties:

B <C<oo, j=1,...,3 (44)
Bi=0=p=0 j=1...3 (45)
BB =0 j=1...3 (49
> k=1 (47)

JjeT
Clearly, (44) is the £P condition, while (45) and (46) ensure the positivity preservation property. For example, in the steady
case we can write

0P e B N v A
i T ¥ —TZCU(UI*UJ) —Zcij(utfuj)y
d)i ﬁi jeT JjeT
Jj#E Jj#

with ¢; = g—Pc,J Since ¢; > 0, then (46) guarantees c; > 0, hence the positivity of the resulting scheme.
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Concerning the mapping, a common choice, which is adopted here too, is to use the so-called PSI limiter
P max(f;, (1) .
> jer Max(p;, 0)
For scalar steady problems, this limiter has been very successful when applied to the N scheme, in which case we recover the
PSI scheme of Struijs [48,38]. In this case, here we will speak of the limited N (LN) scheme. We will instead refer to the lim-

ited Lax-Friedrichs (LLF) scheme, as to the one obtained by limiting (40). Note that, when using (48), if ﬁf <0, then f; =0,
otherwise one easily shows that f; < A°, hence

Vi :ﬁ—;e [0,1]. (49)

(48)

For systems, as in [7,6], we decompose the residual on the basis of the solution space given by the eigenvectors of the flux
Jacobian. On each triangle, fixed a direction &, we compute {I}o_, and {rs}7_,, the left and right eigenvectors of K,—(E, u) (cf.
Eq. (15)), evaluated on u, the locally averaged state of u,. We then project the residuals on {I,}};:

¢or=ls¢" and ¢}, =1.¢. (50)

Each component ¢ is now treated as a scalar residual. We compute /iij = (pJ‘}/q)ﬁ, and use (48) to get nonlinear coefficients
Bs;- Finally, we set

@y =Byidr and ¢ =" @ 1. (51)

We use the same construction in the time dependent case, obviously replacing ¢, and ¢; by ®', and ®f.

The resulting scheme is £7P by construction. Its stability on simple-waves is studied in [7]. We will show later that, in the
case of the SWE, this construction allows to build discretizations preserving the positivity of the relative water height.

In this paper, the direction & needed for this construction is always taken to be the direction of the local velocity vector ii, com-
puted in each element from a locally averaged state of the conservative variables u.

3.3.4. Stability and dissipation

Stability and convergence proofs are often based on bounds on the L? norm of the solution (linear problems), or on en-
tropy inequalities (such as (4)) [12,28,50]. The attempt to formulate discrete variants of these stability criteria for RD has
not been very fruitful up to now, and few results exist (see e.g. [3]).

The relevant issue is really making sure of the existence and uniqueness of the discrete solution, and of its convergence
with the mesh parameter h. This is ultimately linked to the properties of the discrete algebraic Eq. (26) (or (30)). Consider for
example the case of the steady scalar advection equation. One way to look at the problem is that if we can rewrite the steady
discrete Eq. (26) as linear algebraic system'

Aptip =f, (52)
we should be sure that the matrix Ay is invertible. This issue is studied in [2]. For positivity preserving multidimensional up-
wind RD schemes such as the N and the LN schemes, in the reference it is shown that the matrix A, admits a block trian-
gular decomposition, and that each block A, is invertible. To generalize the analysis to non-upwind discretizations such as
for example the LLF scheme, in [2] it is suggested to replace (52) with the iterative update

um =o' — (A" —f) with o e R
This procedure will converge if, for some 0 < r < 1, one has

I(Id — oA o||* < 7| o)),

for any arbitrary » € R™, and M denoting the total number of unknowns. Developing the last expression, one ends up with
the requirement

1-r 2, W 2 2
VAW = ——||v = An2||” > Cu|l?|” = O,
w0 > ol + S 1A > Gl

which brings us back to the necessity showing the coercivity of the discretization, and/or of establishing a L? stability esti-
mate of the type v'A,v > 0.

For linear first order RD schemes such as the N and LF ones, this estimate can be easily demonstrated [3,20]. The situ-
ation is less clear for the limited schemes. In [11], for example, some sources of instability (in the L? sense seen above) related
to the limiting process are pointed out for the scalar LN scheme. However, this scheme yields in practice good iterative and

T At least for smooth solutions, eventually by means of a linearization of the nonlinear algebraic system.
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grid convergence. This is in line with the result of [2]: scalar multidimensional upwind schemes lead to well posed algebraic
equations.
The LLF scheme, instead, shows in practice poor convergence. This is observed especially on smooth problems, where one
obtains wiggly numerical solutions, symptom of the presence of undamped spurious modes.
To cure this problem, we follow [2]. The idea is to add a stabilizing upwind bias to the discretization, by means of a
streamline dissipation term:
5 _ o - - . 0(Tn,u
=T OThm) [ (@ V)@ Vuydedy = o+ 1T kg (53)
JT
where the additional superscript s stands for stabilized. The rationale for this modification is that the energy production
associated to the “stabilized” scheme reads now (cf. analysis above, and see [2,20] for details)

vAv=>" Zy,»(ﬁ}&%(ﬂ, Uh)/(a-wj)(a.wh)dxdy>
TeTy jeT T

2 . (54)
= [ Ta-nde Y [ tn@ - Vo@ Vo) + 0T 0@ Vo)

TeTy

where as we shall see shortly, the vector & depends on the distance between the nodes of T and its gravity center, and on the
Bjs. Independently on this, the important point is that now, for some definition of 0(7 4, us) > 0, the condition v'Av > 0 will
be verified.

The parameter 6(7 p, uy) is introduced for two reasons. One is to provide a correct scaling of the streamline dissipation
term with respect to mesh size and advection speed, so that the additional term has the same dimensions as the element
residual ¢ (and equivalently of the limited nonlinear residual f;¢"). The other is to make sure that the additional term is
only added in correspondence of smooth regions of the solution. For this reason, from now on we shall write

O(T n,un) = T(Th)E(Us),

where t(77) is basically the standard streamline dissipation stabilization parameter, and €(uy) is the smoothness sensor.
Definitions for these parameters will be given in Section 5.

In the time dependent case, following the initial developments of [40], we use a similar technique. To illustrate how we
proceed, let us assume to be only interested in smooth solutions, so that we can work with a locally linearized constant coef-
ficients quasi-linear problem. To devise a consistent modification of the mass matrix, we make use of a well-known analogy
between RD and Petrov-Galerkin. Other formulations might however be thought of, as the geometrical analysis of [22]
shows. Different ways exist to present the analogy between RD and finite elements (see e.g. [35,24,6,43]). In the simplest
setting, one recasts a linearity preserving scheme as a perturbation of the Galerkin finite element scheme:

Zﬁ@T:/wi@Vuhdxder > /5Za-whdxdy:0,
TeD; e TeT) /T

with 6] = g, — 1/3 if i € T, 6] = 0 otherwise. This corresponds to chose as a test function the quantity

T T
W; =y;+9;,
with y; the basis function (19). Whenever g; > 0Vi € T, due to the properties of the linear basis functions (19), one can find a
unique point Pr € T such that Vj e T we have y;(Pr) = ;. Denoting by Gy the gravity center of the element, we can use the
linearity of ; to re-write the Petrov-Galerkin scheme as

/l//,ﬁ-Vuhdxdy—s- > hT/E-Vz//,»@Vuhdxdy:Q
Q T

TeTh
with hr a local mesh size, and hy& = Py — Gy. This is equivalent to rewriting the test function as
w1T = l//i + hTf . v‘//h

which now closely reminds of the SUPG test function. However, let now & be the direction giving the distribution bias cor-

responding to a limited scheme (cf. Eq. (54)). Since the limiting process does not guarantee any control over the location of

Py, the vector & generally does not introduce a bias in the streamline direction, that is & is not necessarily in the direction of

the propagation speed d@. In the case of the LLF scheme, & is likely to have the direction of the largest component of the solu-

tion gradient, that is (for steady advection) the cross-wind direction. It is not unlikely, however, that & might even point

upstream. This leads to poor stability. The cure proposed in [2] restores the correct direction in the bias of the discretization.
To go to the time dependent case, we first discretize in time with the trapezium scheme:

2 2
—u™ 4 d-vu = —u" —d- vut
At At
Being u" known, we can work with the model equation

yu+d-vVu=S(x,y),
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with y > 0. We apply the Petrov-Galerkin formulation to this non-homogeneous advection-reaction problem to get,
neglecting the contribution of the source term on the right hand side, and after some manipulations:

Zcp,-:o,

TeD;

where
D = f; /T (yup +d - Vup)dxdy + /T ((//i - %) yupdxdy + /T <1//, )a Vuydxdy.
However, for a constant d, the last term vanishes due to the linear variation of u;,, and to the relation
/r. (lp,- - %) dxdy = 0. (55)
Ultimately we get
®; = p; / (yup + @ - Vuy)dxdy + / (1//, )yuh dxdy.
Taking now f; = f;, given by a limited scheme, and adding the streamline stabilization term, one ends with
o7 = (5 + ST ) [ un @ Vudxay-+ [ (v~ 3 ).

In the last expression, we can identify the contribution of the nonlinear limited scheme, plus the streamline upwind bias,
plus the last term that can be recast as

/ <‘p1——>"/uhd"d}’ V36 ;DUUH

where the matrix D is symmetric positive semi-definite and given by

2 -1 -1
D=]-1 2 -1
-1 -1 2

The additional energy production due to this term reads (cf. analysis above, and see [2,20] for details)

Z/tADZ/: Z V*Zyszijk _ Z V|T| 1 Z/j)z > 0,

TeTy JjeT keT ueT
i#j
which shows its dissipative character.

We now go back to our original purpose of stabilizing the nonlinear limited scheme in the time dependent case. Firstly we
note that the previous analysis only applies in smooth areas of the solution. This means that the additional stabilization
operator should also be premultiplied by €(uy). Repeating the development for the time dependent advection equation,
and including this last remark, we end up with

o7 = 50"+ et o0 + LS Dy g ). (56)
IT| 6 <
where for €(u,) = 1 he get back exactly the Petrov-Galerkin scheme applied to the time dependent equation. In general, €(u;)
and t(7) being constant in each element, we can write for a locally linear (or linearized) problem

tn+1
o = / / <%+ a- Vuh)dxdydt with ol =g + e(uh)<a ST (Th) + i — %)7 (57)
t"

which, even though not in the form of a linearity preserving scheme, does verify the second-order of accuracy conditions for
time dependent problems [41,44] thanks to the uniform boundedness of ! (cf. Section 3.3.3).

Concerning the case of a hyperbolic system, to be rigorous the additional terms should be evaluated in terms of the
quasi-linear form in entropy variables in order to actually yield a meaningful dissipative operator (cf. Section 2.2 and
[12]). However, in our case these terms are actually active only in smooth regions of the solution. Moreover, their defini-
tion is such that they do not influence the conservative character of the discretization. Indeed, using (19) and (17), we
immediately get:

Z/a Vit (T,,)(at—s—a Vu,,)dxdy 0,

jeT



1082 M. Ricchiuto, A. Bollermann/Journal of Computational Physics 228 (2009) 1071-1115

Z/@J —)( +a- Vuh>dxdy 0.

jeT

and

This gives some freedom in the choice of the approximation of these terms for systems. In particular, we can evaluate them
on a locally linearized quasi-linear form of the equations, in a chosen set of variables (see also the discussion in [30,29]). This
corresponds to the evaluation of the streamline dissipation integral with a one point quadrature formula, which, as the anal-
ysis made in [5] shows, is sufficient to yield a well posed set of algebraic equations in the case of second order schemes. With
this choice we obtain

et [ vuy 1T L Vi dedy = elu) o 7T,
in the steady case, while in the time dependent case we have
cw) o Sy (R VT il - 4) (S )dxdydt =
€(uy) <,KT T(Th)®™ + 5 EDu(ll”“ ll]”)),
with the non-conservative residuals
" = [, LY. Vu,dxdy = %K (o)
= L (S 2y )dxdy = B S - w) + 44 (u) + 47w )),

jET

u being a local (constant) average state of the state vector u. Note that now T(77) is in general a stabilization matrix. In prac-
tice, the additional terms become active only in smooth regions of the solution, we have simplified things by replacing the
non-conservative residuals ¢™ with the conservative local approximations ¢'. In the steady case, this leads to the stabilized
nonlinear schemes defined by:

- ﬂl ¢ + E(uh) ‘T‘ ( )¢T7 (58)
where the superscript s stands for stabilized. For time dependent simulations we use instead:
. T
O = " + e(uy) (T (Th)®" + | | ZD,, u —u) ) (59)
]ET

Once more we recall that in these formulas the stabilization terms arise from the application of the Petrov-Galerkin analogy
(57) to a locally linearized (constant coefficients) quasi-linear form of the system.

Note that, as shown in [2], and as we shall see in some of the numerical tests, for systems also the matrix limited N
scheme is subject to the same stability problems of the LLF scheme, and needs the addition of the stabilization operators.
In the following, we will refer to the limited and stabilized schemes used in this paper as to the LNs and LLFs schemes.

As a last remark, we note that including the stabilization terms leads to the loss of formal monotonicity (viz. positivity
preservation). Numerical results show an essentially non-oscillatory behavior, with very small oscillations across disconti-
nuities [2,40]. To minimize this side effect, the parameter €(u;) is chosen such that €(u,) ~ h in discontinuities, while
€(uy) ~ 1 elsewhere. Details of how to compute €(u,,) and T(7) will be given in Section 5. To simplify the notation, in
the following we will omit the dependence of these parameters on solution and mesh, simply writing €(u,) = €, and
T(Th) = Th.

3.3.5. Obtaining the solution

For the positivity analysis of Section 4.2, it is useful to introduce now the technique used to get the nodal values of the
discrete solution. As anticipated in Section 3.1, we employ an explicit pseudo-time iterative technique. In the steady case,
given the nodal values of the initial solution u?, we set Vp > 0

¢ =9’ (W),
with p the pseudo—time step number, and then we repeat
vl =u - Z %, (60)
IS =

where As is the pseudo time step, and the ¢/s representing the local splitting of ¢”. We continue this procedure until we have
convergence in some norm of the residual.
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In the time dependent case, we use the same technique. At each time step n, we set u”+1 0

q)p — (DT(urHl.p’un)’

=u! and

with p the pseudo time step number. Now we repeat

n+lp+1 _ n+lp
uf =u |5\ Zcb (61)

TeD;

where As is the pseudo time step, and the ®!s representing the local splitting of ®”. We continue this procedure until we
have convergence in some norm of the residual (see Section 5 for more details).

4. Application to the SWE

To apply the schemes discussed in Section 3 to the SWE we have to take into account the source term modeling
the variation of the bathymetry. The analysis reported in [20,41] shows that, in general, central and pointwise treat-
ments of source terms lead to a loss of accuracy. Consistent discretizations are instead obtained by introducing the
source term in the definition of the cell-residual. So, when seeking a steady solution of the SWE, we define the element
residual ¢ as

o' (up) =/ (V'}'h(“h)*Sh(uh,XJ))dXdy:]4 Fn(up) -ndl — / Sn(un,x,y)dxdy. (62)
T oT JT
Similarly, in the time dependent case, the space-time residual @' (u;) is computed as
oo ou 7| At
@' (uy) :/ / ( "4V Fh — Shlup,x, y))dxdydt =) W —u) +7(¢T(uﬁ“) + ¢ (ul), (63)
tn

JjeT

with ¢" as in (62). Starting from these definitions, we proceed exactly as illustrated in Section 3. In particular, we note that
the definitions of the N scheme and of the Lax-Friedrichs scheme remain unchanged, the presence of the source term being
taken into account directly in the definition of the residual. The limiting, and the stabilization steps (see Sections 3.3.3, 3.3.4)
remain unchanged, except at the wet/dry interface which will be discussed shortly.

In the following sections, we study the properties of the RD discretizations considered in this paper, with respect to their
application to the SWE. Three main aspects are discussed:

e Well-balancedness,
e preservation of the positivity of the water height H,
o treatment of the wetting/drying interface.

4.1. Well-balancedness

When solving the SWE the numerical balance between flux divergence and the source term modeling the bed slope var-
iation is very important. The respect of this balance is known in literature as the well-balancedness of the discretization. The
analysis of the accuracy of RD discretizations in presence of source terms reported in [41,20] shows that, for a linear spatial
approximation, and as long as we use a linearity preserving scheme, combined with definition (62) of the residual, we retain
the ©(h?) truncation error when approximating a regular solution.

In addition to this, in [20] it has been shown that if the source term is discretized independently of the fluxes, second
order of accuracy is in general lost, with the unique exception of central schemes. As in the homogeneous case, a good
design criterion is to look for linearity preserving discretizations having bounded distribution coefficients. However, the
presence of the additional stabilization terms requires a slight generalization of the discussion made in [41,20], concern-
ing the SWE.

We start here from the actual evaluation of the spatial residual ¢'. As in [41], we make the hypothesis that for the SWE the
integrals in (62) are evaluated exactly with respect to the linear approximation of the water height H;. This leads to the following
formulas for the spatial residual (cf. Eq. (2)):

T Hy (i - 1) } ' {0 } {O }
¢ 7%&T{Hhﬁh( ) dl+2 or LgH; - dl+/ gVB; dxdy

i
Lt 5]+ o[ Joer o] ]
= dl H dxd H dxd
%’T{Hhﬁh(ﬁ & |+ | &Hy xdy+ | 8Hy| gp |dXdY (64)

N 751 {Z:gz’zﬁ:)ﬁ)} dl+g7H ,%: [(()H,» +Bj)ﬁj}7
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where Gauss—Green’s formula has been used to pass from the first to the second line, and exact integration with respect to
the linear approximation (18) (cf. also equation (19)) to get to the final expression, in which

H=2 ZHJ

j&T
The interesting result is that, due to (17), when evaluated with (64), the residual ¢ (u;) vanishes identically when u,, is the
lake at rest solution, that is when i, = 0 and H(x,y) + B(x,y) = Ho, with Hy a constant. This leads to the proposition (see [41]
for more):

Proposition 4.1. Provided that the same numerical representation is used for the water height and for the local height of the
bottom B(x,y), and that the local residual is evaluated exactly with respect to this numerical representation of H and B, linearity
preserving R'D schemes preserve exactly the lake at rest solution, independently on topology of the mesh, character of B(x,y) and
polynomial degree of the approximation.

For steady calculations, last proposition applies to the stabilized schemes of type (58). Scheme (56), however, is not in the
form of a linearity preserving distribution, so we need to generalize Proposition 4.1.

We start by a remark concerning the form of the stabilization used for the SWE. As in the general case, this is done using a
locally linearized (constant coefficients) form of the quasi-linear form. In particular, let F¢ be the convective part of the flux

. { Hii }
Fe=| _ _|
Hu® i

On an element T, given the local average u, we consider the linearized quasi-linear form of the SWE:

o[H 1 oF(@) _[H 0 0 Hr
&{Hﬁ}—ir ou 'V{Hﬁ}-i_(gﬁ 0>'V{Hu}_0

For a linear representation of H, B and Hii, the application of the Petrov-Galerkin formula (57) yields

. K; T
(D?s :ﬂ;d)"c + € <|Tthq)nc | ‘ ZDU n+1 7_1 >?

]eT

B 1 a H a:FC(ﬁ) H 0 O Hm[
_/r" T<&{Hﬁ}h+ ou .V{Hﬁ}h+<gﬁ 0>'V[Hu] >dxdydt

As done before, we now replace the non-conservative residual by its conservative approximation, so that we end up again with

s K; T
(D,.S_[}id)TJreh(T‘L'h(DT ZDU ut! — ;), (65)

j&T

where

where

Ul At
O = > )+ S (T () + T (),
JjeT

with ¢ as in (64). Note in particular, that for the SWE the difference between the non-conservative approximation of the residual
and its conservative one is in the evaluation of the integral of the convective flux F¢ (cf. equation (64)). The gravitational terms are
evaluated in the exact same way in the two cases.

Concerning the properties of the scheme, as recalled in Section 3.3.3, the analysis of [41] shows that also for non-homo-
geneous problems schemes that can be recast as

tn+1
ol = [ [o (a““w Fi(w) - sh<uh,x,y>)dxdydt,
th B

verify the formal condition for having a (’)(hz) truncation error (hence second-order of accuracy), provided that w! is uni-
formly bounded [41,20]. Additionally, we immediately see that if u, is the lake at rest solution, that is if &, = 0, and
Hy(x,y) + Bn(x,y) = Ho, with Hp constant, then scheme (65) leads to the discrete equation

M, Th,up) (U™ —U") =0, (66)

where U; = u;. So, provided that the mass matrix M(B;, T n,u,) is invertible, scheme (65) will preserve this solution. In a
more general way, note that, provided that ] is uniformly bounded and locally differentiable, and that we integrate the
equations exactly with respect to the linear variation of H, and By, on the lake at rest solution we have

W1 Nias .
/ /wTV F(uy dxdydt+/ /thw { B )}dxdydt
t" h

tn+1 tn+1 tn+1

/ f ol F(uy) - ndldtf/ /fc uy) Vconxdde/ /thw [VH }dxdydt—
[TI
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since F¢(uy,) vanishes on the lake at rest state, and since any consistent interpolation gives
VHo =Ho ) V; = 0.
jeT
This leads again to a discrete equation of the type (66), and provided that the mass matrix is invertible, to the preservation of
the lake at rest state. This proves the following generalization of proposition 4.1.

Proposition 4.2. Provided that the same numerical representation is used for the water height and for the local height of the
bottom B(x,y), and that all integrals are evaluated exactly with respect to this numerical representation of H and B, schemes that
can be recast as

t,
I w,<a““+v Filuy) - sh<uh,x,y)>dxdydt,
Q

preserve exactly the lake at rest solution, independently on topology of the mesh, character of B(x,y) and polynomial degree of the
approximation, provided that

:Zw?

TeTy
is uniformly bounded and locally differentiable, and that the associated mass matrix is invertible.

The purpose of the stabilization is precisely to ensure that the mass matrix of the RD discretization is invertible. Even
though no analytical proof of this fact is given in this paper (we refer however the reader to [13] for the analysis of the mass
matrix of the SUPG scheme which has close resemblance to the one of scheme (65)), the numerical results will show that
proposition 4.2 is indeed verified by our schemes, and that, moreover, we achieve grid convergence with the expected rate.

4.2. Positivity of the water height

We consider now the preservation of the positivity of the water height. We analyze the Lax-Friedrichs scheme to show
that, under a constraint on the size of the time step, it can indeed ensure this property. The hypotheses under which this is
true for the LLF scheme are given.

In the following analysis, we look for the conditions under which, starting from non-negative nodal values of the water
height, we get a positive value of H in each node of the mesh, when using the explicit iteration schemes (21) or (61).

Explicit Euler update: LF scheme. We start with the explicit update (21). Using (41), we have for the water height:

H'' = H“—?E: ¢Hn+ ocT}:H” H}) |, (67)
| |TeD JjeT
J#

where the sub-script r has been added to the LF dissipation coefficient to make the exposition clearer. For a linear approx-
imation of u, we have

¢,§:7{ Hii - fidl = ZHu, i, (68)
JoT

]ET

Using this expression the update (67) becomes

At 1 u-n 1 At il - 1i;
n+l _ i no - J n
H; _< 7|S\3§ + 207 )H‘+3|S| E § ( )H]. (69)

TeD; TeD; jET

Due to definition of o in (42) (see also (11)) we have

o — ”fé"f >0, (70)

so the quantity in parentheses in the second term of (69) is positive. For the coefficient of H] we can write

At 1 U; - 1;
\5\3Z< 2 ) |5|Z°‘T’ (71)

TeD; TeD;

so that if
IS;il

At < ,
> e, 0T
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then given positive nodal values of H at time t", H*! will be positive Vi. This shows that the LF scheme preserves the pos-
itivity of the water height. We set

Sil
ALEE = ISl (73)
ZT&D oy’
where the superscript EE stands for Explicit Euler. In practice, we compute the time step as
At = VALEE v < 1. (74)

Explicit Euler update: LLF scheme. Concerning the nonlinear LLF scheme, one can easily see that provided that the limiting is
performed directly on the water height equation, and if (74) is satisfied, the LLF scheme preserves the positivity of the water
height. This is basically a consequence of property (49). In fact, proceeding as before, we have for the LLF scheme

le_1+1: ‘S‘Z/lzc Hn"'mZ%ZCLFHn

TeD; jgr TeD; J.GT
J#Ei J#i (75)
> (1o o g S
| | TeD; ‘ ‘ TeD; jeT
J#i
Clearly, if (74)is verified, and using (49), we have
IS;i] < ISi]
ZTED xr ZTeD,W(xT
Hence, condition (74) is enough to guarantee the positivity of the water height when using the LLF scheme.
Trapezium time integration: LF scheme. We will now try to carry over our analysis to the time dependent case. The time

discretizations used in this case are implicit. However, we can exploit the explicit pseudo-time stepping solution strategy
(61) to simplify the analysis. With the notation of §3.3.5, we have

H?H.pﬂ _ H?H'p _ AS(H?H.p _ H?)

At

_ASAt Z ¢Hn“p L2 OCTZ Hn+1p Hn+1p)

28| &5
"D e (76)
AsAt
¢Hn+ or Y (Hi —H})
2|Si| . 3 ;

J#i

Using again (68) and rearranging terms we obtain
1 At TR nilp 1 At ur - ii; a1
32|5|Z< Ly 200 || $HMY 4+ As|1 g—m‘;( 5 +Zocr> Hi +3

ZZ( 0 7)

’ TeD; jeT

H?+1‘p+1 _ {1 _Asl1

AsAt TN wip 1A
X 72|5i| Z Z (OCT T Hj §

TeD; jeT
i

If we define oy according to (42), and we take the maximum of its values at times t" and t"*!, we are sure of the positivity of
the last two terms (provided that we have no negative water heights at time t", and at the pth iteration). Concerning the
terms containing H}, we proceed as before to get

1 At uf -1
32‘S|Z< +20€T>> 2|S|Z T-

TeD;

Provided that
2|Si]
ZTED o

these terms will give a positive contribution. Note that, not surprisingly for the trapezium scheme, last condition is twice as
large as the one given by the explicit Euler discretization (Eq. (74)). In practice, we set

At = 2VAtE. v < 1. (78)

= 2AtFE,
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At last, we consider the terms containing H*'?. Again we use the estimate

1 At ey
1—As{ 3%2( +2ar>]>l

TeD,

2] Z“T}

TeD,;

So that the positivity of the LF scheme with trapezium time integration requires the satisfaction of the pseudo-time step
constraint

1 1

As < - (79)
1 +%ZT€DI-OCT 1 +V

Trapezium time integration: LLF scheme (space-time). Consider now the space time nonlinear discretization obtained by
limiting the LF scheme with trapezium time integration (cf. section 3.4). As before, we can show that provided that the lim-
iting is performed directly on the water height equation, the positivity of the LLF scheme is a consequence of property (49). In par-
ticular, after a few manipulations, we can rewrite the update for the LLF scheme with trapezium time integration as

n+1,p+1 At ﬂHlp ﬁt n+1,p un _' n
H; = 1—ASZ |T|+— f+2ar H! +A523|5| m—— 5 LI P H!

TeD; TeD;

1 ASAt * ﬁ]"‘pr]p ﬁ] n+1.p 1 ASAt * u n] n
T35, > oy Z(ocTz Hi 45 25| Sid o — 5 |H. (80)

TeD; jeT TeD; JjeT
j#i i

Obviously, the important terms to look at are the ones multiplying H;, the definition of o assuring the positivity of the “off-
diagonal” terms. Due to the local character of the limiting procedure, we are obliged to proceed in an element-wise fashion.
In particular, proceeding as before, one immediately shows that the term multiplying H} is positive if in every element we
make sure that

<2
At 30(T
leading to the modified time step constraint

_ ||
At = 2v¥r€11rh13ar v<1. (81)

Note that this constraint corresponds to the local positivity of the LF scheme with trapezium time integration [20]. Concern-
ing the term multiplying H''?, setting in each element

T_3OCTAt
o2

we immediately see that the positivity of H will be preserved provided that we can ensure that

= 0.

37| { v
1-As : (’7 + 207)
T; 3Si| 2

Since oy > @7 - 7i;/2, and y; < 1, we have

VTl |y, V0 (Y AL I
3 |V e 2 T2 )| S g (1Y) < g min( 4+,

Finally, using (22) we end up with the result that the LLF scheme with trapezium time integration will preserve the positivity
of the water height provided that for each node

As < min .
= TeD; 1+ V7

(82)

Note that, due to the locality of the analysis and to the regular use of the definition of oy to bound terms, the conditions
obtained (Egs. (81) and (82)) are probably over-constraining.

4.3. Handling dry and partially dry cells
This section is devoted to the description of the treatment of dry and partially dry cells. A dry cell is one in which

H; = 0,Vj € T. When this happens, it is easy to see that the residual and the split residuals are zero, since solution vector,
fluxes, and source term are identically zero over the element. Hence, completely dry elements pose no particular problem.
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Most numerical problems arise in partially dry cells. These are cells in which H; = 0 for some of the nodes and Hy > 0 at
least in one vertex. We have to distinguish between three situations. Cells T with constant bed height B; = B Vj are called flat.
If instead

HjZO, H, >0 and Bj > By j,kET,
we speak of cells with adverse slope, whereas if
Hj=0, H,>0 and Bj<By jkeT,

we speak of downward slope. The issues we have to solve in these front cells are the following:

1. Detection of dry nodes. In practice, we encounter cells in which some nodes have heights H; # 0, however H; < 1. We
should make sure that these cells are treated properly.

2. Positivity. We have to ensure that our schemes always keep positive values of the water height.

3. Artificial velocities in front elements. Along the wetting-drying front one typically observes two behaviors. For flat cells or
downward slopes, the schemes behave like one expects: the water runs in direction of the dry nodes. For adverse slopes,
one faces a problem. To see this, let us have a look at the representation in the top pictures of Fig. 3. In the left picture we
can see the lake at rest situation in a front element, and in the right one we see its numerical representation for a linear
variation of the water and bottom heights. Clearly, a non-physical slope in the water free surface is introduced by the
linear numerical representation. This leads to artificial velocities in the downward direction, so that eventually the lake
at rest state is not preserved numerically.

4. Undefined velocities. Even if conserved quantities are well defined, for (nearly) dry nodes, the velocity ii is not, that is, the
quotient u = Hu/H is not necessarily bounded.

We illustrate hereafter the way in which these issues have been handled.

4.3.1. Dry nodes detection

In cells with very low water heights, the element residual ¢ (or ®") should be small, and so should be the split residuals.
In practice, we have to deal with undefined velocity vectors. This is in part due to the limited machine precision, and can lead
to unphysical values of the residuals. The solution adopted here is quite common in shallow water simulations [32,10,47]
and consists in introducing a cut-off value of the water height, say C; < h, below which we set the velocity to zero, that is:

0 ifH<GC;'

Note that we do not introduce any cut-off value on the water height itself. The positivity of H is dealt with differently as we shall
see shortly. Note that the choice of C; is not necessarily trivial. For some test problems, we will analyze its influence on the
numerical output. What we found out is that, probably due to the very small discharge in vicinity of the wetting/drying front,
the value of this constant affects little the numerical solution. A possible criterion to choose C; is given in Section 5.

Hiot = Ho

" H

B
Bo ?

Fig. 3. Lake at rest in front cells with adverse slope. Top left: real situation. Top-right: artificial gradient of total water height due to linear approximation.
Bottom: recovery of constant total water height through redefinition of the bottom height.
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4.3.2. Water height positivity: nonlinear schemes in front cells

In Section 4.2 we have shown that, under a time step constraint, the LLF scheme can preserve the positivity of the water
height. However, this is only true if the limiting is performed directly on the water height equation. The eigenvector projec-
tion described in Section 3.3.3, while improving the convergence of the overall algorithm [4], a priori does not guarantee the
preservation of the positivity of H.

To enforce positivity, we proceed as follows. Let us consider for example the time dependent case. We start by noting that,
when projecting back to conservative variables (cf. Eq. (51)), we get for the water height residual sent to node i:

@ = Q11+ @521 + Q3131

Using the expression of the eigenvectors given in the Appendix A.1, the fact that the projection is performed using the eigen-
vectors in the velocity direction ¢ = ii/||ii||, and that ¢} ; = g ;! with g;; < 1, we get

D), = @3+ @3 < Q3]+ 03]

When we make explicit use of the expression of the left eigenvectors (cf. Appendix A.1) in the velocity direction, we can fur-
ther bound the previous expression using the components of the element residual in conservative variables. In particular,
one easily shows that
1 1
@} <5 (11 = Fr[ 1+ Fr)| @]+ (|03 + |5]) = P,

where Fr denotes the Froude number introduced in Section 2.2, evaluated using local mean values of the unknowns. The last
inequality is valid for all the nodes of the element. Based on the explicit update (61), and on (22), we define the following
local worst guess for the value of the minimal water height at the new pseudo-time iteration:

3As

Hjim = Hppip — W@lim
with
Hpin = rJnEiTn(min(H]’?,H]’?”'p)). (83)

We finally modify the limiting procedure by setting in equation (50)

g

T l,;(DT if Hj, =0

((DT)(7 if Hlim <0 '
and similarly for the split residuals. In addition to this, we smoothly switch off the stabilization in front cells, so that in these
elements we recover the positivity preserving limited scheme. This is controlled by the definition of €(u,) given in
Section 5.

4.3.3. Bed slope in front elements
To solve the problem illustrated in Fig. 3, we follow [16]. The observation is that for the lake at rest state we have

Hiej =Ho, Vje€T= VH,=-VB. (84)

In cells with adverse slope this is not the case anymore. For example, in the situation of Fig. 3 we have
By > Hy = Hyo2 = Hyo 3. This leads to different gradients VH;, and —VBj, so that ¢ 0, and spurious velocities are generated.
As in [16], the problem is cured by using, in front cells with adverse slope, a modified value of the bathymetry in the dry
nodes. In particular, in the computation of the spatial residual, for all nodes j with H; =0 we replace Bj by Hmax,
with

Hpax = maX(Hj + Bj)' (85)
jeT

H] >0

This approach cures the problem in the lake at rest case, for which we obtain again ¢” = 0 (cf. Fig. 3).

Note that the nodes in which we redefine the bathymetry all verify H = 0 and ii = 0. Hence, in front cells which are not at
rest, this modification does not alter the total mass of water contained in the cell, and does not alter the mass flux, at least
not directly. However, this procedure does alter the bed slope seen by the flow in these cells, leading to a reduction of the
slope. We have tried to correct this flaw by pre-multiplying the term VH,, by a factor of the type

Bmax - Hmin
Hmax - Hmin
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with Bpax the max value of the bed height in the cell, and Hp,;, the minimum of the total water height over the cell. We have
observed no influence of this further modification in our calculations. The results presented later are obtained without this
correction. This issue deserves further attention and will be further studied in the future.

5. Implementation details

Before discussing the numerical tests, we give some details on the practical implementation of the schemes. Important
points are the computation of the physical variables from the conserved ones, the computation of the residual, and the def-
inition of €, and T, in the stabilization term. A summary is given hereafter.

Physical variables. We recompute the vector of physical variables [Hu ] after each iteration (21) (or (61) in the unsteady
case). When doing this, we apply the velocity cut-off described in Section 4.3.1. This allows to have always at each iter-
ation current nodal values of the conserved and of the physical variables. Concerning the definition of the cut-off value Cj,
we tried different solutions. The important issue is to make sure that this value is sufficiently small compared to the mesh
size. We found out experimentally that a good definition of this constant is

where L. is a reference geometrical dimension of the spatial domain computed as

Lt = max [|X; — X -
ijeTy

Residual evaluation. As already seen in Section 4.1, we compute the spatial residual as in (64). The contour integral is
evaluated with a 2 points Gaussian formula on each edge of T. In doing this, we use a linear variation of the conserved
variables u;, and interpolate the nodal velocities (recomputed after each update) to obtain the i, - i terms in each Gauss
point.

Stabilization term. The role of the parameter T, in the stabilization terms is to provide the correct scaling w.r.t. mesh size
and wave speeds. Ultimately, T, must guarantee that the additional term has the “dimensions” of the cell-residual. It is
easily seen that this is achieved through a definition guaranteeing that T, = O(h) x O(|ii|"). After a review of the liter-
ature on SUPG and Least-Squares stabilized Galerkin schemes, we decided to test the following two formulations (cf.
equation (38) and see [12,51,34] and references therein)

-1
T
T =T (Z Kj) =5 N (87)
jeT
and (see Eq. (11) for the notation)
2h

- - 88
2|u|| +a’ (88)

T

where all quantities are evaluated using mean values of the variables. Neither of these definitions are optimal. The study
of better formulations is under way, in the spirit of [29,30,39].The smoothness monitor €, should instead guarantee that
the extra terms are active mainly in smooth parts of the solution. Here we follow [2], and use a definition based on the
entropy residual which we locally approximate as

(pE — vf(DT,

where V is an average over the element of the vector of entropy variables (6). Following the definitions given in [2], we
use as a smoothness sensor the quantity

Ellii T Hl'e
€, = min ]’M e’L,hemeifn. (89)
Lref|(pE‘

In the last expression we make use of the following local quantities: E which is an elementwise reference value of the
energy (5), computed using local averages of the variables; HﬁH{% which is the largest component of the local averaged
speed; Hp,;, given by (83). We also use the global values of L., the reference length introduced in (86), and H,es taken
as the maximum value of H in the initial solution.The exponential factor is added to take into account the occurrence
of dry areas. Please note that this factor is always of order one, except for small values of Hy,;, in correspondence of which
it quickly tends toward zero. In the time dependent case we use of the same formulas, except that ¢, = Vi®'/At, and
h = (|T|AD)'2 in (88).

Explicit pseudo-time stepping. All the results presented are obtained by solving the nonlinear algebraic equations by
means of an explicit pseudo-time stepping procedure. In particular, in the steady case we perform our iterations as

utl =uf - % Z‘Pi(“ﬁ)-,

I ‘ ’| TeD;
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where At; is the local time step respecting (74) with v = 0.7. We consider the solution as being converged when the norm
of the water height residual drops to a sufficiently low value, that is

[IR"]|» <m with (R"); = (¢;(u}))y.

0
IRl fep;

In steady computations we normally take m = 10~ — 107'°.Similarly, in time dependent computations the solution is up-
dated as (cf. Section 3.4.1)

As;
u?+1.p+l _ u?ﬂ'p _F.i Z(Di(uﬁ)v
t Tep;

where while the (physical) time step is compu